zoukankan      html  css  js  c++  java
  • 高精度模板

    #include<bits/stdc++.h>
    #define MAXN 9999
    #define MAXSIZE 10
    #define DLEN 4
    typedef long long ll;
    using namespace std;
     
    class BigNum
    {
    private:
        ll a[50];    //可以控制大数的位数
        ll len;       //大数长度
    public:
        BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
        BigNum(const ll);       //将一个ll类型的变量转化为大数
        BigNum(const char*);     //将一个字符串类型的变量转化为大数
        BigNum(const BigNum &);  //拷贝构造函数
        BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算
     
        friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
        friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符
     
        BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
        BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
        BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
        BigNum operator/(const ll   &) const;    //重载除法运算符,大数对一个整数进行相除运算
     
        BigNum operator^(const ll  &) const;    //大数的n次方运算
        ll    operator%(const ll  &) const;    //大数对一个ll类型的变量进行取模运算
        bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
        bool   operator>(const ll & t)const;      //大数和一个ll类型的变量的大小比较
    
    };
    BigNum::BigNum(const ll b)     //将一个ll类型的变量转化为大数
    {
        ll c,d = b;
        len = 0;
        memset(a,0,sizeof(a));
        while(d > MAXN)
        {
            c = d - (d / (MAXN + 1)) * (MAXN + 1);
            d = d / (MAXN + 1);
            a[len++] = c;
        }
        a[len++] = d;
    }
    BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
    {
        ll t,k,index,l,i;
        memset(a,0,sizeof(a));
        l=strlen(s);
        len=l/DLEN;
        if(l%DLEN)
            len++;
        index=0;
        for(i=l-1;i>=0;i-=DLEN)
        {
            t=0;
            k=i-DLEN+1;
            if(k<0)
                k=0;
            for(ll j=k;j<=i;j++)
                t=t*10+s[j]-'0';
            a[index++]=t;
        }
    }
    BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
    {
        ll i;
        memset(a,0,sizeof(a));
        for(i = 0 ; i < len ; i++)
            a[i] = T.a[i];
    }
    BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
    {
        ll i;
        len = n.len;
        memset(a,0,sizeof(a));
        for(i = 0 ; i < len ; i++)
            a[i] = n.a[i];
        return *this;
    }
    istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
    {
        char ch[MAXSIZE*4];
        ll i = -1;
        in>>ch;
        ll l=strlen(ch);
        ll count=0,sum=0;
        for(i=l-1;i>=0;)
        {
            sum = 0;
            ll t=1;
            for(ll j=0;j<4&&i>=0;j++,i--,t*=10)
            {
                sum+=(ch[i]-'0')*t;
            }
            b.a[count]=sum;
            count++;
        }
        b.len =count++;
        return in;
     
    }
    ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
    {
        ll i;
        cout << b.a[b.len - 1];
        for(i = b.len - 2 ; i >= 0 ; i--)
        {
            cout.width(DLEN);
            cout.fill('0');
            cout << b.a[i];
        }
        return out;
    }
     
    BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
    {
        BigNum t(*this);
        ll i,big;      //位数
        big = T.len > len ? T.len : len;
        for(i = 0 ; i < big ; i++)
        {
            t.a[i] +=T.a[i];
            if(t.a[i] > MAXN)
            {
                t.a[i + 1]++;
                t.a[i] -=MAXN+1;
            }
        }
        if(t.a[big] != 0)
            t.len = big + 1;
        else
            t.len = big;
        return t;
    }
    BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
    {
        ll i,j,big;
        bool flag;
        BigNum t1,t2;
        if(*this>T)
        {
            t1=*this;
            t2=T;
            flag=0;
        }
        else
        {
            t1=T;
            t2=*this;
            flag=1;
        }
        big=t1.len;
        for(i = 0 ; i < big ; i++)
        {
            if(t1.a[i] < t2.a[i])
            {
                j = i + 1;
                while(t1.a[j] == 0)
                    j++;
                t1.a[j--]--;
                while(j > i)
                    t1.a[j--] += MAXN;
                t1.a[i] += MAXN + 1 - t2.a[i];
            }
            else
                t1.a[i] -= t2.a[i];
        }
        t1.len = big;
        while(t1.a[len - 1] == 0 && t1.len > 1)
        {
            t1.len--;
            big--;
        }
        if(flag)
            t1.a[big-1]=0-t1.a[big-1];
        return t1;
    }
     
    BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
    {
        BigNum ret;
        ll i,j,up;
        ll temp,temp1;
        for(i = 0 ; i < len ; i++)
        {
            up = 0;
            for(j = 0 ; j < T.len ; j++)
            {
                temp = a[i] * T.a[j] + ret.a[i + j] + up;
                if(temp > MAXN)
                {
                    temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
                    up = temp / (MAXN + 1);
                    ret.a[i + j] = temp1;
                }
                else
                {
                    up = 0;
                    ret.a[i + j] = temp;
                }
            }
            if(up != 0)
                ret.a[i + j] = up;
        }
        ret.len = i + j;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--;
        return ret;
    }
    BigNum BigNum::operator/(const ll & b) const   //大数对一个整数进行相除运算
    {
        BigNum ret;
        ll i,down = 0;
        for(i = len - 1 ; i >= 0 ; i--)
        {
            ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
            down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
        }
        ret.len = len;
        while(ret.a[ret.len - 1] == 0 && ret.len > 1)
            ret.len--;
        return ret;
    }
    ll BigNum::operator %(const ll & b) const    //大数对一个ll类型的变量进行取模运算
    {
        ll i,d=0;
        for (i = len-1; i>=0; i--)
        {
            d = ((d * (MAXN+1))% b + a[i])% b;
        }
        return d;
    }
    BigNum BigNum::operator^(const ll & n) const    //大数的n次方运算
    {
        BigNum t,ret(1);
        ll i;
        if(n<0)
            exit(-1);
        if(n==0)
            return 1;
        if(n==1)
            return *this;
        ll m=n;
        while(m>1)
        {
            t=*this;
            for( i=1;i<<1<=m;i<<=1)
            {
                t=t*t;
            }
            m-=i;
            ret=ret*t;
            if(m==1)
                ret=ret*(*this);
        }
        return ret;
    }
    bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
    {
        ll ln;
        if(len > T.len)
            return true;
        else if(len == T.len)
        {
            ln = len - 1;
            while(a[ln] == T.a[ln] && ln >= 0)
                ln--;
            if(ln >= 0 && a[ln] > T.a[ln])
                return true;
            else
                return false;
        }
        else
            return false;
    }
    bool BigNum::operator >(const ll & t) const    //大数和一个ll类型的变量的大小比较
    {
        BigNum b(t);
        return *this>b;
    }
     
    ll n,a[105],m,ans=0;
    ll gcd(ll a,ll b){return b==0?a:gcd(b,a%b);}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
     
    void dfs(ll d,ll tot,ll cnt){
      if(d==n+1){
        if(cnt){
          if(cnt&1) ans+=m/tot;
          else ans-=m/tot;
        }
        return;
      }
     
      dfs(d+1,tot,cnt);
     
      BigNum tmp=BigNum(tot)/gcd(tot,a[d])*BigNum(a[d]);
      if(tmp>BigNum(m)) return;
      dfs(d+1,lcm(tot,a[d]),cnt+1);
    }
     
    int main()
    {
        scanf("%lld%lld",&n,&m);
        for(ll i=1;i<=n;i++) scanf("%lld",&a[i]);
     
        dfs(1,1,0);
     
        ans=max((ll)0,m-ans);
        printf("%lld
    ",ans);
        return 0;
    }
  • 相关阅读:
    51nod乘积之和
    Dell服务器安装OpenManage(OMSA)
    Nginx反向代理PHP
    搭建haproxy
    108. Convert Sorted Array to Binary Search Tree
    60. Permutation Sequence
    142. Linked List Cycle II
    129. Sum Root to Leaf Numbers
    118. Pascal's Triangle
    26. Remove Duplicates from Sorted Array
  • 原文地址:https://www.cnblogs.com/nublity/p/11148833.html
Copyright © 2011-2022 走看看