zoukankan      html  css  js  c++  java
  • 爬取腾讯社招职位信息

    腾讯社招职位(多线程+线程池)

    >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

    version_1

    声明:本内容仅学习参考,如有侵权,将立即删除

    <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

    1、开发文档

    域名:https://careers.tencent.com/search.html?index=1

    返回数据:json
    数据地址:https://careers.tencent.com/tencentcareer/api/post/Query?&countryId=1&pageIndex=1&pageSize=10&language=zh-cn&area=cn
    数据地址分析:需要有countryId,area
    要求:(1)招聘网站的中国地区职位名称、职位类别、招聘人数、工作地点、发布时间、以及每个职位详情的点击连接

    分析:(1)formdata分析
        0>method:get
        1>关键字有:pageIndex,pageSize,timestamp
        2>去掉pageIndex失效,相关参数
        3>去掉pageSize失效,相关参数,默认为10,改写数字,返回相应数量数据,建议为默认值,构建获取api规则
        4>去掉timestamp有效,非相关参数,有js生成,为时间戳,作用暂时未知,是否为反爬虫策略未知
        5>countryId和area确定爬取的范围
       (2)共有5573条中国地区职业数据
       (3)headers分析
        1>User-Agent,相关参数
        2>referer:
            https://careers.tencent.com/search.html?query=co_1&sc=1
            https://careers.tencent.com/search.html?query=co_1&index=2&sc=1
            https://careers.tencent.com/search.html?query=co_1&index=3&sc=1
            相关参数,index=pageIndex,需要构建requests-headers分析
            将referer和url一条一条对应起来村放入url_referer_queue中
        3>cookie,因未登录即可浏览,可附带,但不是必须
        4>初步设想:队列里按顺序存取,因此每个url对应一个refer,待验证

    技术:(1)使用队列存取数据
       (2)使用线程池处理线程,或可以用来请求json数据(待测试)>>>>>>>(因为使用了队列,故不需要)
       (3)json存取,或可以保存为csv文件(待测试)

    2、源代码  

    import requests
    from queue import Queue
    import json
    from threading import Thread
    from multiprocessing.dummy import Pool
    
    
    class Txsz():
        def __init__(self):
            # 总共的数据条数
            self.count = 5573
            # 创建初始url
            self.start_url = "https://careers.tencent.com/tencentcareer/api/post/Query?&countryId=1&pageIndex={}&pageSize=10&language=zh-cn&area=cn"
            # 创建start_referer和second_referer
            self.start_referer = "https://careers.tencent.com/search.html?query=co_1&sc=1"
            self.second_referer = "https://careers.tencent.com/search.html?query=co_1&index={}&sc=1"
            """
            创建队列
            self.url_queue存放url
            self.json_queue存放所有的json
            self.content_queue存放解析的内容
            """
            self.url_referer_queue = Queue()
            self.json_queue = Queue()
            self.content_queue = Queue()
    
        def get_url(self):
            """
            构建爬去的url
            参数pageIndex,pageSize 变化,由count=5727设计
            url_list返回待待爬取列表
            """
            pageSize = 10
            for pageIndex in range(1,self.count//pageSize+2):
                item = dict()
                url = self.start_url.format(pageIndex)
    
                if pageIndex==1:
                    referer = self.start_referer
                else:
                    referer = self.second_referer.format(pageIndex)
    
                item["url"] = url
                item["referer"] = referer
    
                self.url_referer_queue.put(item)
        
        def get_json(self):
            """
            获取返回的json数据,原则上每条url对应一个json数据
            """
            while self.url_referer_queue.not_empty:
                """判断非空,则执行操作,否则跳出"""
                # 获取url,referer
                item = self.url_referer_queue.get()
                url = item["url"]
                referer = item["referer"]
    
                # 构造请求头
                headers = {
                "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36",
                "cookie": "_ga=GA1.2.275188285.1582376294; pgv_pvi=4879193088; _gcl_au=1.1.1802818219.1582376295; loading=agree",
                "referer":referer,
                }
                print("spider_url:",url)
                # 获取响应的json
                response = requests.get(url,headers=headers).content.decode()
                # 将str转化为dict
                response = json.loads(response)
                # 添加获取到的json到json_queue
                self.json_queue.put(response)
                # 队列计数减一
                self.url_referer_queue.task_done()
    
        def get_content(self):
            """
            分析json_queue中的单项json,并提取数据
            职位名称:RecruitPostName
            职位ID:PostId
            每个职位详情页地址:PostURL
            职位类别:CategoryName
            工作地点:LocationName
            发布时间:LastUpdateTime
            工作职责:Responsibility
            """
            while self.json_queue.not_empty:
                # 获取json
                json_ = self.json_queue.get()
                Posts = json_["Data"]["Posts"]
                for item in Posts:
                    item_dict = {
                        "RecruitPostName":item["RecruitPostName"],
                        "PostId":item["PostId"],
                        "PostURL":item["PostURL"],
                        "CategoryName":item["CategoryName"],
                        "LocationName":item["LocationName"],
                        "LastUpdateTime":item["LastUpdateTime"],
                        "Responsibility":item["Responsibility"],
                    }
                    self.content_queue.put(item_dict)
                self.json_queue.task_done()
    
        def save_content(self):
            while self.content_queue.not_empty:
                item = self.content_queue.get()
                with open("tencent_social_positoon.json","a",encoding="utf-8") as f:
                    f.write(json.dumps(item,ensure_ascii=False,indent=2))
                    f.write(",")
                self.content_queue.task_done()
    
        def run(self):
            """
            实现主要逻辑
            """
            # 创建线程列表
            thread_list = list()
            # 创建get_url方法的线程
            url_thread = Thread(target=self.get_url)
            thread_list.append(url_thread)
            # 创建get_json方法的线程
            json_thread = Thread(target=self.get_json)
            thread_list.append(json_thread)
            # 创建get_content方法的线程
            content_thread = Thread(target=self.get_content)
            thread_list.append(content_thread)
            # 创建save_content方法的线程
            save_content_thread = Thread(target=self.save_content)
            thread_list.append(save_content_thread)
    
            # # 创建线程池
            # pool = Pool(10)
    
            # def process_thread(thread_):
            #     thread_.setDaemon(True)
            #     thread_.start()
    
            # pool.map(process_thread,thread_list)
            for t in thread_list:
                t.setDaemon(True)
                t.start()
    
            # 让各队列全空才退出主线程
            self.url_referer_queue.join()
            self.json_queue.join()
            self.content_queue.join()
    
    
    if __name__=="__main__":
        obj = Txsz()
        obj.run()
  • 相关阅读:
    使用pjsip传输已经编码的视频
    xubuntu14.04下编译pjsip及pjsua2 java
    解决 Python.h:没有那个文件或目录 错误的方法
    HIbernate與不支持boolean的數據庫之間的映射
    js数组的操作
    jQuery中ajax的使用与缓存问题的解决方法
    网络游戏中应用可插拔工厂处理消息
    How to Train Triplet Networks with 100K Identities?
    (转)如何用TensorLayer做目标检测的数据增强
    图像超分辨-IDN
  • 原文地址:https://www.cnblogs.com/nuochengze/p/12885064.html
Copyright © 2011-2022 走看看