zoukankan      html  css  js  c++  java
  • Latex公式示范

    (A_alpha(x))      (qquad)      (a^2+b^2=c^2 )      (qquad)      (sumlimits_{m=0}^infty)

    (frac{(-1)^m}{m!})      (qquad)           (x=frac{-bpmsqrt{b^2-4ac}}{2a})     (qquad)        (left(x+a ight)^n=sum_{k=0}^{n}{inom{n}{k}x^ka^{n-k}})

    (limlimits_{n ightarrowinfty}{left(1+frac{1}{n} ight)^n})

    (limlimits_{n ightarrowinfty})     (qquad)          (limlimits_{n ightarrow0})        (qquad)         (limlimits_{x ightarrow x_0})

    (limlimits_{x ightarrow x_0}f{left(x ight)}=f{left(x_0 ight)})

    (Delta y)   (qquad)   (frac{pi}{2})(qquad)      (frac{partial y}{partial x})     (qquad)    (Pinom{n}{k})     (qquad)     (sqrt[3]{x})

     (a^{3}_{ij})

    (x eg y )

    (int_{0}^{frac{pi}{2}})

    (prod_epsilon)

    (xle y)

    (xge y)

    (xapprox y)

    (x imes y)

    (xpm y)

    (xdiv y)

    (ain A)

    •(fleft(x ight))在(x_0)处(或按(left(x-x_0 ight))的幂展开)的带有佩亚诺余项的n阶泰勒公式→若(x_0=0)→带有佩亚诺余项的麦克劳林公式

         (R_nleft(x ight)=oleft(left(x-x_0 ight)^{n} ight))由洛必达法则证出

    •(fleft(x ight))在(x_0)处(或按(left(x-x_0 ight))的幂展开)的带有拉格朗日余项的n阶泰勒公式→若(x_0=0)→带有拉格朗日余项的麦克劳林公式

           (R_nleft(x ight)=frac{f^{left(n+1 ight)}left(x_i ight)}{left(n+1 ight)!}left(x-x_0 ight)^{n+1})由柯西中值定理证出

    latex学习链接:http://www.mohu.org/info/symbols/symbols.htm

                         

                         

  • 相关阅读:
    阿里云 CDN+OSS 解决方案
    一次完整的HTTP请求过程
    apache多站点配置中ServerAlias什么意思
    legend3---apache配置https
    legend3---Fiddler如何抓手机app的包
    Fiddler:增加IP列
    http请求报文格式和响应报文格式
    http请求头中Referer的含义和作用
    Chrome保存的HAR文件怎么打开
    Android Studio 错误 Duplicate files copied in APK META-INF/LICENSE.txt
  • 原文地址:https://www.cnblogs.com/nwnu-daizh/p/9825975.html
Copyright © 2011-2022 走看看