zoukankan      html  css  js  c++  java
  • 过拟合VS欠拟合、偏差VS方差

    1. 过拟合 欠拟合

    过拟合:在训练集(training set)上表现好,但是在测试集上效果差,也就是说在已知的数据集合中非常好,但是在添加一些新的数据进来训练效果就会差很多,造成这样的原因是考虑影响因素太多,超出自变量的维度过于多了;

    欠拟合:模型拟合不够,在训练集(training set)上表现效果差,没有充分的利用数据,预测的准确度低;

    高阶多项式回归的过拟合与欠拟合

    逻辑回归的过拟合与欠拟合

    2. 偏差 方差

    偏差:首先error=bias+variance;bias反映的是模型在样本上的输出与真实值之间的误差,即模型本身的精确度;

    方差:Variance反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性;

    • 低偏差低方差时,是我们所追求的效果,此时预测值正中靶心(最接近真实值),且比较集中(方差小)。
    • 低偏差高方差时,预测值基本落在真实值周围,但很分散,此时方差较大,说明模型的稳定性不够好。
    • 高偏差低方差时,预测值与真实值有较大距离,但此时值很集中,方差小;模型的稳定性较好,但预测准确率不高,处于"一如既往地预测不准"的状态。
    • 高偏差高方差时,是我们最不想看到的结果,此时模型不仅预测不准确,而且还不稳定,每次预测的值都差别比较大。

     

  • 相关阅读:
    16.5 函数对象
    16.4.7 无序关联容器(C++11)
    16.4.6 关联容器
    16.4.5 容器种类(外1:7种序列容器类型)
    16.4.5 容器种类(下:序列)
    # SpringBoot + Spring AMQP 整合 RabbitMQ
    RabbitMQ 消息模型
    RabbitMQ Docker 单机与集群部署
    RabbitMQ 核心概念入门
    MQ消息中间件 + JMS + AMQP 理论知识
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/10583260.html
Copyright © 2011-2022 走看看