zoukankan      html  css  js  c++  java
  • tf.variable_scope()和tf.name_scope()

    1.tf.variable_scope

    功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable或者tf.Variable生成的变量

    TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en

    举例:

    with tf.variable_scope('V1'):
        a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    with tf.variable_scope('V2'):
        a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        print(a1.name)
        print(a2.name)
        print(a3.name)
        print(a4.name)

    with tf.variable_scope("foo"):
        v = tf.get_variable("v", [1])
    with tf.variable_scope("foo", reuse=True):
        v1 = tf.get_variable("v", [1])
    assert v1 == v #不报错
    

    如果想要重用变量,可以设置reuse_variables()

    import numpy as np
    with tf.variable_scope('V1'):
        a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
        tf.get_variable_scope().reuse_variables()
        assert tf.get_variable_scope().reuse == True
        a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    
    with tf.variable_scope('V1',reuse=True):
        a5 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
    
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        print(a1.name)
        print(a2.name)
        print(a3.name)
        print(a4.name)
        print(a5.name)
    

    variable重名,虽然name设置的一样,但是实际是不共享同一个变量的;get_variable重name,其实是共享的同一个变量。

    2.tf.name_scope

    功能:tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量

    TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/name_scope?hl=en

    with tf.name_scope('V1'):
        a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    with tf.name_scope('V2'):
        a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1))
        a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2')
    
    with tf.Session() as sess:
        sess.run(tf.initialize_all_variables())
        print(a1.name)
        print(a2.name)
        print(a3.name)
        print(a4.name)
    

    a1,a3会报错:ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:

     

    参考文献:

    【1】tf.variable_scope和tf.name_scope的用法

    【2】参数共享:https://jasdeep06.github.io/posts/variable-sharing-in-tensorflow/

  • 相关阅读:
    冲刺二4
    第十四周总结
    大道至简阅读笔记02
    冲刺二3
    冲刺二2
    大道至简阅读笔记01
    冲刺二1
    第十三周总结
    第一阶段意见评价
    5月23日团队开发日志
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/11277076.html
Copyright © 2011-2022 走看看