zoukankan      html  css  js  c++  java
  • BERT源码分析(一)---预训练

    整个代码文件如下:

    BertModel类实现了BERT模型,代码位于modeling.py模块中。

    1.配置类(BertConfig)

    这段代码定义了BERT模型的一些默认参数和4个文件处理函数。

    参数:

    1. vocab_size:词表大小
    2. hidden_size:隐藏层神经元数
    3. num_hidden_layers:Transformer encoder中的隐藏层数
    4. num_attention_heads:multi-head attention 的head数
    5. intermediate_size:encoder的“中间”隐层神经元数(例如feed-forward layer)
    6. hidden_act:隐藏层激活函数
    7. hidden_dropout_prob:隐层dropout率
    8. attention_probs_dropout_prob:注意力部分的dropout
    9. max_position_embeddings:最大位置编码
    10. type_vocab_size:token_type_ids的词典大小
    11. initializer_range:truncated_normal_initializer初始化方法的stdev

    函数:

    1. from_dict(cls,json_object):从字典中获取config参数;
    2. from_json(cls,json_file):从json文件中获取config参数;
    3. to_dict():将实例序列化为Python字典;
    4. to_json_string():将此实例序列化为JSON字符串。
    class BertConfig(object):
      """Configuration for `BertModel`."""
    
      def __init__(self,
                   vocab_size, # 词表大小
                   hidden_size=768, # 隐藏层神经元数
                   num_hidden_layers=12, # transformer encoder中的隐藏层数
                   num_attention_heads=12, # multi-head attention中head的数量
                   intermediate_size=3072, # encoder的"中间"隐层神经元数
                   hidden_act="gelu",# 隐藏层激活函数
                   hidden_dropout_prob=0.1, # 隐层dropout率
                   attention_probs_dropout_prob=0.1, # 注意力部分的dropout
                   max_position_embeddings=512, # 最大位置编码
                   type_vocab_size=16, # token_type_ids的词典大小
                   initializer_range=0.02): # 初始化方法的stdev
        """Constructs BertConfig.
    
        Args:
          vocab_size: Vocabulary size of `inputs_ids` in `BertModel`.
          hidden_size: Size of the encoder layers and the pooler layer.
          num_hidden_layers: Number of hidden layers in the Transformer encoder.
          num_attention_heads: Number of attention heads for each attention layer in
            the Transformer encoder.
          intermediate_size: The size of the "intermediate" (i.e., feed-forward)
            layer in the Transformer encoder.
          hidden_act: The non-linear activation function (function or string) in the
            encoder and pooler.
          hidden_dropout_prob: The dropout probability for all fully connected
            layers in the embeddings, encoder, and pooler.
          attention_probs_dropout_prob: The dropout ratio for the attention
            probabilities.
          max_position_embeddings: The maximum sequence length that this model might
            ever be used with. Typically set this to something large just in case
            (e.g., 512 or 1024 or 2048).
          type_vocab_size: The vocabulary size of the `token_type_ids` passed into
            `BertModel`.
          initializer_range: The stdev of the truncated_normal_initializer for
            initializing all weight matrices.
        """
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.hidden_act = hidden_act
        self.intermediate_size = intermediate_size
        self.hidden_dropout_prob = hidden_dropout_prob
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.max_position_embeddings = max_position_embeddings
        self.type_vocab_size = type_vocab_size
        self.initializer_range = initializer_range
    
      @classmethod
      def from_dict(cls, json_object):
        """Constructs a `BertConfig` from a Python dictionary of parameters."""
        config = BertConfig(vocab_size=None)
        for (key, value) in six.iteritems(json_object):
          config.__dict__[key] = value
        return config
    
      @classmethod
      def from_json_file(cls, json_file):
        """Constructs a `BertConfig` from a json file of parameters."""
        with tf.gfile.GFile(json_file, "r") as reader:
          text = reader.read()
        return cls.from_dict(json.loads(text))
    
      def to_dict(self):
        """Serializes this instance to a Python dictionary."""
        output = copy.deepcopy(self.__dict__)
        return output
    
      def to_json_string(self):
        """Serializes this instance to a JSON string."""
        return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "
    "

    2.获取词向量(embedding_lookup) 

    def embedding_lookup(input_ids,
                         vocab_size,
                         embedding_size=128,
                         initializer_range=0.02,
                         word_embedding_name="word_embeddings",
                         use_one_hot_embeddings=False) 

    功能:输入每句话每个单词的id,返回这句话的embedding表示(获得token embedding)

    参数:

    1. input_ids:word id 【batch_size, seq_length】
    2. vocab_size:embedding词表
    3. embedding_size:embedding维度
    4. initializer_range:embedding初始化范围
    5. word_embedding_name:embeddding table命名
    6. use_one_hot_embeddings:是否使用one-hot embedding

    返回:

    1. output:输出对应单词的词向量[batch_size, seq_length, num_inputs*embedding_size]
    2. embedding table:单词对应embedding的表【batch_size, seq_length, embedding_size】

      如果使用one-hot,则先对输入word_ids进行one-hot处理,再乘以embedding_table,得到对应word的词向量;不使用one-hot,直接用从embedding_table中获取对应word_ids的词向量。

    def embedding_lookup(input_ids,
                         vocab_size,
                         embedding_size=128,
                         initializer_range=0.02,
                         word_embedding_name="word_embeddings",
                         use_one_hot_embeddings=False):
      """Looks up words embeddings for id tensor.
      获取词向量
    
      Args:
        input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
          ids.
        vocab_size: int. Size of the embedding vocabulary.
        embedding_size: int. Width of the word embeddings.
        initializer_range: float. Embedding initialization range.
        word_embedding_name: string. Name of the embedding table.
        use_one_hot_embeddings: bool. If True, use one-hot method for word
          embeddings. If False, use `tf.gather()`.
    
      Returns:
        float Tensor of shape [batch_size, seq_length, embedding_size].
      """
      # This function assumes that the input is of shape [batch_size, seq_length,
      # num_inputs].
      #
      # If the input is a 2D tensor of shape [batch_size, seq_length], we
      # reshape to [batch_size, seq_length, 1].
      if input_ids.shape.ndims == 2:
        input_ids = tf.expand_dims(input_ids, axis=[-1])
    
      embedding_table = tf.get_variable(
          name=word_embedding_name,
          shape=[vocab_size, embedding_size],
          initializer=create_initializer(initializer_range))
    
      flat_input_ids = tf.reshape(input_ids, [-1]) #【batch_size*seq_length*input_num】
      if use_one_hot_embeddings:
        one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
        output = tf.matmul(one_hot_input_ids, embedding_table)
      else:
        output = tf.gather(embedding_table, flat_input_ids)
    
      input_shape = get_shape_list(input_ids)
    
      output = tf.reshape(output,
                          input_shape[0:-1] + [input_shape[-1] * embedding_size])
      return (output, embedding_table)

    3.词向量的后续处理(embedding_postprocessor)

    def embedding_postprocessor(input_tensor,
                                use_token_type=False,
                                token_type_ids=None,
                                token_type_vocab_size=16,# 一般是2
                                token_type_embedding_name="token_type_embeddings",
                                use_position_embeddings=True,
                                position_embedding_name="position_embeddings",
                                initializer_range=0.02,
                                max_position_embeddings=512,#最大位置编码,必须大于等于max_seq_len
                                dropout_prob=0.1):

    功能:在token embedding的基础上,增加segment embedding和position embedding。

    输入:

    1. input_tensor:float,[batch_size, seq_length, embedding_size].
    2. use_token_type: 布尔,是否添加‘token_type_ids’的embedding
    3. token_type_ids: (可选) int32,[batch_size, seq_length]. 只有use_token_type为True情况下使用
    4. token_type_vocab_size: int. “ token_type_ids”的词汇量
    5. token_type_embedding_name: string,token type ids的embedding table表名称 
    6. use_position_embeddings: 布尔,是否添加position embeddings
    7. position_embedding_name: string,positional embedding的embedding table表名称
    8. initializer_range: float,权重初始化范围 
    9. max_position_embeddings: int,此模型可能曾经使用的最大sequence长度。 该长度可以比input_tensor的序列长度长,但不能短。
    10. dropout_prob: float,应用于最终输出张量的dropout概率
    def embedding_postprocessor(input_tensor,
                                use_token_type=False,
                                token_type_ids=None,
                                token_type_vocab_size=16,# 一般是2
                                token_type_embedding_name="token_type_embeddings",
                                use_position_embeddings=True,
                                position_embedding_name="position_embeddings",
                                initializer_range=0.02,
                                max_position_embeddings=512,#最大位置编码,必须大于等于max_seq_len
                                dropout_prob=0.1):
      """Performs various post-processing on a word embedding tensor.
    
      Args:
        input_tensor: float Tensor of shape [batch_size, seq_length,
          embedding_size].
        use_token_type: bool. Whether to add embeddings for `token_type_ids`.
        token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
          Must be specified if `use_token_type` is True.
        token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
        token_type_embedding_name: string. The name of the embedding table variable
          for token type ids.
        use_position_embeddings: bool. Whether to add position embeddings for the
          position of each token in the sequence.
        position_embedding_name: string. The name of the embedding table variable
          for positional embeddings.
        initializer_range: float. Range of the weight initialization.
        max_position_embeddings: int. Maximum sequence length that might ever be
          used with this model. This can be longer than the sequence length of
          input_tensor, but cannot be shorter.
        dropout_prob: float. Dropout probability applied to the final output tensor.
    
      Returns:
        float tensor with same shape as `input_tensor`.
    
      Raises:
        ValueError: One of the tensor shapes or input values is invalid.
      """
      input_shape = get_shape_list(input_tensor, expected_rank=3)#【batch_size,seq_length,embedding_size】
      batch_size = input_shape[0]
      seq_length = input_shape[1]
      width = input_shape[2]
    
      output = input_tensor
      # Segment position信息
      if use_token_type:
        if token_type_ids is None:
          raise ValueError("`token_type_ids` must be specified if"
                           "`use_token_type` is True.")
        token_type_table = tf.get_variable(
            name=token_type_embedding_name,
            shape=[token_type_vocab_size, width],
            initializer=create_initializer(initializer_range))
        # This vocab will be small so we always do one-hot here, since it is always
        # faster for a small vocabulary.
        flat_token_type_ids = tf.reshape(token_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
        token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
        token_type_embeddings = tf.reshape(token_type_embeddings,
                                           [batch_size, seq_length, width])
        output += token_type_embeddings
      # Position embedding信息
      if use_position_embeddings:
          # 确保seq_length小于等于max_position_embeddings
        assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
        with tf.control_dependencies([assert_op]):
          full_position_embeddings = tf.get_variable(
              name=position_embedding_name,
              shape=[max_position_embeddings, width],
              initializer=create_initializer(initializer_range))
          # Since the position embedding table is a learned variable, we create it
          # using a (long) sequence length `max_position_embeddings`. The actual
          # sequence length might be shorter than this, for faster training of
          # tasks that do not have long sequences.
          #
          # So `full_position_embeddings` is effectively an embedding table
          # for position [0, 1, 2, ..., max_positin_embeddings-1], and the current
          # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
          # perform a slice.
          position_embeddings = tf.slice(full_position_embeddings, [0, 0],
                                         [seq_length, -1])
          num_dims = len(output.shape.as_list())
          # word embedding之后的tensor是[batch_size, seq_length, width]
          # 因为位置编码是与输入内容无关,它的shape总是[seq_length, width]
          # 我们无法把位置Embedding加到word embedding上
          # 因此我们需要扩展位置编码为[1, seq_length, width]
          # 然后就能通过broadcasting加上去了。
    
          # Only the last two dimensions are relevant (`seq_length` and `width`), so
          # we broadcast among the first dimensions, which is typically just
          # the batch size.
          position_broadcast_shape = []
          for _ in range(num_dims - 2):
            position_broadcast_shape.append(1)
          position_broadcast_shape.extend([seq_length, width])
          position_embeddings = tf.reshape(position_embeddings,
                                           position_broadcast_shape)
          output += position_embeddings
    
      output = layer_norm_and_dropout(output, dropout_prob)
      return output

    4.构造attention_mask

    def create_attention_mask_from_input_mask(from_tensor, to_mask):
      """Create 3D attention mask from a 2D tensor mask.
    
      Args:
        from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
        to_mask: int32 Tensor of shape [batch_size, to_seq_length].
    
      Returns:
        float Tensor of shape [batch_size, from_seq_length, to_seq_length].
      """
    

    功能:从2维的mask生成3维的attention mask。

    参数:

    1. from_tensor:padding后的input_ids,2D或者3D张量,[batch_size, from_seq_length,…]
    2. to_mask:mark标记向量[batch_size, to_seq_length]

    返回:

    1. mask:[batch_size, from_seq_length, to_seq_length]
    def create_attention_mask_from_input_mask(from_tensor, to_mask):
      """Create 3D attention mask from a 2D tensor mask.
    
      Args:
        from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
        to_mask: int32 Tensor of shape [batch_size, to_seq_length].
    
      Returns:
        float Tensor of shape [batch_size, from_seq_length, to_seq_length].
      """
      from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
      batch_size = from_shape[0]
      from_seq_length = from_shape[1]
    
      to_shape = get_shape_list(to_mask, expected_rank=2)
      to_seq_length = to_shape[1]
    
      to_mask = tf.cast(
          tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32)
    
      # We don't assume that `from_tensor` is a mask (although it could be). We
      # don't actually care if we attend *from* padding tokens (only *to* padding)
      # tokens so we create a tensor of all ones.
      #
      # `broadcast_ones` = [batch_size, from_seq_length, 1]
      broadcast_ones = tf.ones(
          shape=[batch_size, from_seq_length, 1], dtype=tf.float32)
    
      # Here we broadcast along two dimensions to create the mask.
      mask = broadcast_ones * to_mask
    
      return mask

    5.注意力层(attention layer) 

    def attention_layer(from_tensor,
                        to_tensor,
                        attention_mask=None,
                        num_attention_heads=1,
                        size_per_head=512,
                        query_act=None,
                        key_act=None,
                        value_act=None,
                        attention_probs_dropout_prob=0.0,
                        initializer_range=0.02,
                        do_return_2d_tensor=False,
                        batch_size=None,
                        from_seq_length=None,
                        to_seq_length=None)
    

    功能:实现multi-head attention,考虑key-query-value形式的attention,输入的from_tensor当做是query, to_tensor当做是key和value,当两者相同的时候即为self-attention。

    参数:

    1. from_tensor:[batch_size, from_seq_length, from_width]
    2. to_tensor:[batch_size, to_seq_length, to_width]
    3. attention_mask=None:[batch_size,from_seq_length, to_seq_length]
    4. num_attention_heads=1:attention head numbers
    5. size_per_head=512:每个head的大小
    6. query_act=None:query变换的激活函数
    7. key_act=None:key变换的激活函数
    8. value_act=None:value变换的激活函数
    9. attention_probs_dropout_prob=0.0:attention层的dropout
    10. initializer_range=0.02:初始化取值范围
    11. do_return_2d_tensor=False:是否返回2d张量,
      1. 如果True,输出形状[batch_size*from_seq_length,num_attention_heads*size_per_head]
      2. 如果False,输出形状[batch_size, from_seq_length, num_attention_heads*size_per_head]
    12. batch_size=None:如果输入是3D的, #那么batch就是第一维,但是可能3D的压缩成了2D的,所以需要告诉函数batch_size
    13. from_seq_length=None:同上
    14. to_seq_length=None:同上

    具体过程参照:https://www.cnblogs.com/nxf-rabbit75/p/11945130.html

    def attention_layer(from_tensor,
                        to_tensor,
                        attention_mask=None,
                        num_attention_heads=1,
                        size_per_head=512,
                        query_act=None,
                        key_act=None,
                        value_act=None,
                        attention_probs_dropout_prob=0.0,
                        initializer_range=0.02,
                        do_return_2d_tensor=False,
                        batch_size=None,
                        from_seq_length=None,
                        to_seq_length=None):
      """Performs multi-headed attention from `from_tensor` to `to_tensor`.
    
      This is an implementation of multi-headed attention based on "Attention
      is all you Need". If `from_tensor` and `to_tensor` are the same, then
      this is self-attention. Each timestep in `from_tensor` attends to the
      corresponding sequence in `to_tensor`, and returns a fixed-with vector.
    
      This function first projects `from_tensor` into a "query" tensor and
      `to_tensor` into "key" and "value" tensors. These are (effectively) a list
      of tensors of length `num_attention_heads`, where each tensor is of shape
      [batch_size, seq_length, size_per_head].
    
      Then, the query and key tensors are dot-producted and scaled. These are
      softmaxed to obtain attention probabilities. The value tensors are then
      interpolated by these probabilities, then concatenated back to a single
      tensor and returned.
    
      In practice, the multi-headed attention are done with transposes and
      reshapes rather than actual separate tensors.
    
      Args:
        from_tensor: float Tensor of shape [batch_size, from_seq_length,
          from_width].
        to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
        attention_mask: (optional) int32 Tensor of shape [batch_size,
          from_seq_length, to_seq_length]. The values should be 1 or 0. The
          attention scores will effectively be set to -infinity for any positions in
          the mask that are 0, and will be unchanged for positions that are 1.
        num_attention_heads: int. Number of attention heads.
        size_per_head: int. Size of each attention head.
        query_act: (optional) Activation function for the query transform.
        key_act: (optional) Activation function for the key transform.
        value_act: (optional) Activation function for the value transform.
        attention_probs_dropout_prob: (optional) float. Dropout probability of the
          attention probabilities.
        initializer_range: float. Range of the weight initializer.
        do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
          * from_seq_length, num_attention_heads * size_per_head]. If False, the
          output will be of shape [batch_size, from_seq_length, num_attention_heads
          * size_per_head].
        batch_size: (Optional) int. If the input is 2D, this might be the batch size
          of the 3D version of the `from_tensor` and `to_tensor`.
        from_seq_length: (Optional) If the input is 2D, this might be the seq length
          of the 3D version of the `from_tensor`.
        to_seq_length: (Optional) If the input is 2D, this might be the seq length
          of the 3D version of the `to_tensor`.
    
      Returns:
        float Tensor of shape [batch_size, from_seq_length,
          num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
          true, this will be of shape [batch_size * from_seq_length,
          num_attention_heads * size_per_head]).
    
      Raises:
        ValueError: Any of the arguments or tensor shapes are invalid.
      """
    
      def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
                               seq_length, width):
        output_tensor = tf.reshape(
            input_tensor, [batch_size, seq_length, num_attention_heads, width])
    
        output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
        return output_tensor
    
      from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
      to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])
    
      if len(from_shape) != len(to_shape):
        raise ValueError(
            "The rank of `from_tensor` must match the rank of `to_tensor`.")
    
      if len(from_shape) == 3:
        batch_size = from_shape[0]
        from_seq_length = from_shape[1]
        to_seq_length = to_shape[1]
      elif len(from_shape) == 2:
        if (batch_size is None or from_seq_length is None or to_seq_length is None):
          raise ValueError(
              "When passing in rank 2 tensors to attention_layer, the values "
              "for `batch_size`, `from_seq_length`, and `to_seq_length` "
              "must all be specified.")
    
      # Scalar dimensions referenced here:
      #   B = batch size (number of sequences)
      #   F = `from_tensor` sequence length
      #   T = `to_tensor` sequence length
      #   N = `num_attention_heads`
      #   H = `size_per_head`
    
      from_tensor_2d = reshape_to_matrix(from_tensor)
      to_tensor_2d = reshape_to_matrix(to_tensor)
    
      # `query_layer` = [B*F, N*H]
      query_layer = tf.layers.dense(
          from_tensor_2d,
          num_attention_heads * size_per_head,
          activation=query_act,
          name="query",
          kernel_initializer=create_initializer(initializer_range))
    
      # `key_layer` = [B*T, N*H]
      key_layer = tf.layers.dense(
          to_tensor_2d,
          num_attention_heads * size_per_head,
          activation=key_act,
          name="key",
          kernel_initializer=create_initializer(initializer_range))
    
      # `value_layer` = [B*T, N*H]
      value_layer = tf.layers.dense(
          to_tensor_2d,
          num_attention_heads * size_per_head,
          activation=value_act,
          name="value",
          kernel_initializer=create_initializer(initializer_range))
    
      # query_layer` = [B, N, F, H]
      query_layer = transpose_for_scores(query_layer, batch_size,
                                         num_attention_heads, from_seq_length,
                                         size_per_head)
    
      # `key_layer` = [B, N, T, H]
      key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads,
                                       to_seq_length, size_per_head)
    
      # Take the dot product between "query" and "key" to get the raw
      # attention scores.
      # `attention_scores` = [B, N, F, T]
      attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
      attention_scores = tf.multiply(attention_scores,
                                     1.0 / math.sqrt(float(size_per_head)))
    
      if attention_mask is not None:
        # `attention_mask` = [B, 1, F, T]
        attention_mask = tf.expand_dims(attention_mask, axis=[1])
    
        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0
    
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        attention_scores += adder
    
      # Normalize the attention scores to probabilities.
      # `attention_probs` = [B, N, F, T]
      attention_probs = tf.nn.softmax(attention_scores)
    
      # This is actually dropping out entire tokens to attend to, which might
      # seem a bit unusual, but is taken from the original Transformer paper.
      attention_probs = dropout(attention_probs, attention_probs_dropout_prob)
    
      # `value_layer` = [B, T, N, H]
      value_layer = tf.reshape(
          value_layer,
          [batch_size, to_seq_length, num_attention_heads, size_per_head])
    
      # `value_layer` = [B, N, T, H]
      value_layer = tf.transpose(value_layer, [0, 2, 1, 3])
    
      # `context_layer` = [B, N, F, H]
      context_layer = tf.matmul(attention_probs, value_layer)
    
      # `context_layer` = [B, F, N, H]
      context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
    
      if do_return_2d_tensor:
        # `context_layer` = [B*F, N*H]
        context_layer = tf.reshape(
            context_layer,
            [batch_size * from_seq_length, num_attention_heads * size_per_head])
      else:
        # `context_layer` = [B, F, N*H]
        context_layer = tf.reshape(
            context_layer,
            [batch_size, from_seq_length, num_attention_heads * size_per_head])
    
      return context_layer

    6.Transformer

    def transformer_model(input_tensor,                        # 【batch_size, seq_length, hidden_size】
                          attention_mask=None,                # 【batch_size, seq_length, seq_length】
                          hidden_size=768,
                          num_hidden_layers=12,
                          num_attention_heads=12,
                          intermediate_size=3072,
                          intermediate_act_fn=gelu,            # feed-forward层的激活函数
                          hidden_dropout_prob=0.1,
                          attention_probs_dropout_prob=0.1,
                          initializer_range=0.02,
                          do_return_all_layers=False)
    

    功能:实现Transformer模型

    参数:

    1. input_tensor:[batch_size, seq_length, hidden_size]
    2. attention_mask=None:[batch_size, seq_length, seq_length]
    3. hidden_size=768:Transformer隐藏层大小
    4. num_hidden_layers=12:Transformer的层(block)数
    5. num_attention_heads=12:attention头的数目
    6. intermediate_size=3072:transformer的“中间”隐层神经元数
    7. intermediate_act_fn=gelu:feed-forward层的激活函数
    8. hidden_dropout_prob=0.1
    9. attention_probs_dropout_prob=0.1
    10. initializer_range=0.02
    11. do_return_all_layers=False

    def transformer_model(input_tensor,
                          attention_mask=None,
                          hidden_size=768,
                          num_hidden_layers=12,
                          num_attention_heads=12,
                          intermediate_size=3072,
                          intermediate_act_fn=gelu,
                          hidden_dropout_prob=0.1,
                          attention_probs_dropout_prob=0.1,
                          initializer_range=0.02,
                          do_return_all_layers=False):
      """Multi-headed, multi-layer Transformer from "Attention is All You Need".
    
      This is almost an exact implementation of the original Transformer encoder.
    
      See the original paper:
      https://arxiv.org/abs/1706.03762
    
      Also see:
      https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py
    
      Args:
        input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
        attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
          seq_length], with 1 for positions that can be attended to and 0 in
          positions that should not be.
        hidden_size: int. Hidden size of the Transformer.
        num_hidden_layers: int. Number of layers (blocks) in the Transformer.
        num_attention_heads: int. Number of attention heads in the Transformer.
        intermediate_size: int. The size of the "intermediate" (a.k.a., feed
          forward) layer.
        intermediate_act_fn: function. The non-linear activation function to apply
          to the output of the intermediate/feed-forward layer.
        hidden_dropout_prob: float. Dropout probability for the hidden layers.
        attention_probs_dropout_prob: float. Dropout probability of the attention
          probabilities.
        initializer_range: float. Range of the initializer (stddev of truncated
          normal).
        do_return_all_layers: Whether to also return all layers or just the final
          layer.
    
      Returns:
        float Tensor of shape [batch_size, seq_length, hidden_size], the final
        hidden layer of the Transformer.
    
      Raises:
        ValueError: A Tensor shape or parameter is invalid.
      """
      if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))
    
      attention_head_size = int(hidden_size / num_attention_heads)
      input_shape = get_shape_list(input_tensor, expected_rank=3)
      batch_size = input_shape[0]
      seq_length = input_shape[1]
      input_width = input_shape[2]
    
      # The Transformer performs sum residuals on all layers so the input needs
      # to be the same as the hidden size.
      if input_width != hidden_size:
        raise ValueError("The width of the input tensor (%d) != hidden size (%d)" %
                         (input_width, hidden_size))
    
      # We keep the representation as a 2D tensor to avoid re-shaping it back and
      # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
      # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
      # help the optimizer.
      prev_output = reshape_to_matrix(input_tensor)
    
      all_layer_outputs = []
      for layer_idx in range(num_hidden_layers):
        with tf.variable_scope("layer_%d" % layer_idx):
          layer_input = prev_output
    
          with tf.variable_scope("attention"):
            attention_heads = []
            with tf.variable_scope("self"):
              attention_head = attention_layer(
                  from_tensor=layer_input,
                  to_tensor=layer_input,
                  attention_mask=attention_mask,
                  num_attention_heads=num_attention_heads,
                  size_per_head=attention_head_size,
                  attention_probs_dropout_prob=attention_probs_dropout_prob,
                  initializer_range=initializer_range,
                  do_return_2d_tensor=True,
                  batch_size=batch_size,
                  from_seq_length=seq_length,
                  to_seq_length=seq_length)
              attention_heads.append(attention_head)
    
            attention_output = None
            if len(attention_heads) == 1:
              attention_output = attention_heads[0]
            else:
              # In the case where we have other sequences, we just concatenate
              # them to the self-attention head before the projection.
              attention_output = tf.concat(attention_heads, axis=-1)
    
            # Run a linear projection of `hidden_size` then add a residual
            # with `layer_input`.
            with tf.variable_scope("output"):
              attention_output = tf.layers.dense(
                  attention_output,
                  hidden_size,
                  kernel_initializer=create_initializer(initializer_range))
              attention_output = dropout(attention_output, hidden_dropout_prob)
              attention_output = layer_norm(attention_output + layer_input)
    
          # The activation is only applied to the "intermediate" hidden layer.
          with tf.variable_scope("intermediate"):
            intermediate_output = tf.layers.dense(
                attention_output,
                intermediate_size,
                activation=intermediate_act_fn,
                kernel_initializer=create_initializer(initializer_range))
    
          # Down-project back to `hidden_size` then add the residual.
          with tf.variable_scope("output"):
            layer_output = tf.layers.dense(
                intermediate_output,
                hidden_size,
                kernel_initializer=create_initializer(initializer_range))
            layer_output = dropout(layer_output, hidden_dropout_prob)
            layer_output = layer_norm(layer_output + attention_output)
            prev_output = layer_output
            all_layer_outputs.append(layer_output)
    
      if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
          final_output = reshape_from_matrix(layer_output, input_shape)
          final_outputs.append(final_output)
        return final_outputs
      else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output

    7.函数入口(init)

     

    def __init__(self,
                   config,                            # BertConfig对象
                   is_training,                        
                   input_ids,                        # 【batch_size, seq_length】
                   input_mask=None,                    # 【batch_size, seq_length】
                   token_type_ids=None,                # 【batch_size, seq_length】
                   use_one_hot_embeddings=False,    # 是否使用one-hot;否则tf.gather()
                   scope=None):
    
        config = copy.deepcopy(config)
        if not is_training:
          config.hidden_dropout_prob = 0.0
          config.attention_probs_dropout_prob = 0.0
    
        input_shape = get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]
        # 不做mask,即所有元素为1
        if input_mask is None:
          input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32)
    
        if token_type_ids is None:
          token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32)
    
        with tf.variable_scope(scope, default_name="bert"):
          with tf.variable_scope("embeddings"):
            # word embedding 
            (self.embedding_output, self.embedding_table) = embedding_lookup(
                input_ids=input_ids,
                vocab_size=config.vocab_size,
                embedding_size=config.hidden_size,
                initializer_range=config.initializer_range,
                word_embedding_name="word_embeddings",
                use_one_hot_embeddings=use_one_hot_embeddings)
    
            # 添加position embedding和segment embedding
            # layer norm + dropout
            self.embedding_output = embedding_postprocessor(
                input_tensor=self.embedding_output,
                use_token_type=True,
                token_type_ids=token_type_ids,
                token_type_vocab_size=config.type_vocab_size,
                token_type_embedding_name="token_type_embeddings",
                use_position_embeddings=True,
                position_embedding_name="position_embeddings",
                initializer_range=config.initializer_range,
                max_position_embeddings=config.max_position_embeddings,
                dropout_prob=config.hidden_dropout_prob)
    
          with tf.variable_scope("encoder"):
    
            # input_ids是经过padding的word_ids: [25, 120, 34, 0, 0]
            # input_mask是有效词标记:            [1, 1, 1, 0, 0]
            attention_mask = create_attention_mask_from_input_mask(
                input_ids, input_mask)
    
            # transformer模块叠加
            # `sequence_output` shape = [batch_size, seq_length, hidden_size].
            self.all_encoder_layers = transformer_model(
                input_tensor=self.embedding_output,
                attention_mask=attention_mask,
                hidden_size=config.hidden_size,
                num_hidden_layers=config.num_hidden_layers,
                num_attention_heads=config.num_attention_heads,
                intermediate_size=config.intermediate_size,
                intermediate_act_fn=get_activation(config.hidden_act),
                hidden_dropout_prob=config.hidden_dropout_prob,
                attention_probs_dropout_prob=config.attention_probs_dropout_prob,
                initializer_range=config.initializer_range,
                do_return_all_layers=True)
    
          # `self.sequence_output`是最后一层的输出,shape为【batch_size, seq_length, hidden_size】
          self.sequence_output = self.all_encoder_layers[-1]
    
          # ‘pooler’部分将encoder输出【batch_size, seq_length, hidden_size】
          # 转成【batch_size, hidden_size】
          with tf.variable_scope("pooler"):
            # 取最后一层的第一个时刻[CLS]对应的tensor, 对于分类任务很重要
            # sequence_output[:, 0:1, :]得到的是[batch_size, 1, hidden_size]
            # 我们需要用squeeze把第二维去掉
            first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1)
            # 然后再加一个全连接层,输出仍然是[batch_size, hidden_size]
            self.pooled_output = tf.layers.dense(
                first_token_tensor,
                config.hidden_size,
                activation=tf.tanh,
                kernel_initializer=create_initializer(config.initializer_range))
    

    举例:

    # Already been converted into WordPiece token ids
      input_ids = tf.constant([[31, 51, 99], [15, 5, 0]])
      input_mask = tf.constant([[1, 1, 1], [1, 1, 0]])
      token_type_ids = tf.constant([[0, 0, 1], [0, 1, 0]])
    
      config = modeling.BertConfig(vocab_size=32000, hidden_size=512,
        num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024)
    
      model = modeling.BertModel(config=config, is_training=True,
        input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids)
    
      label_embeddings = tf.get_variable(...)
      pooled_output = model.get_pooled_output()
      logits = tf.matmul(pooled_output, label_embeddings)
    

      

    参考文献:

    【1】BERT实战(源码分析+踩坑)

    【2】BERT源码分析PART I - 知乎

    【3】tf.one_hot()函数简介 - nini_coded的博客

    【4】tensorflow 1.0 学习:参数初始化(initializer) - denny402 - 博客园

    【5】TensorFlow函数(八)tf.control_dependencies() - 章朔 - 博客园

  • 相关阅读:
    Elasticsearch安装中文分词器IK
    Docker安装ElasticSearch
    Docker安装
    Docker安装EOS
    Docker更改容器端口映射
    BoltDB 一个简单的纯 Go key/value 存储
    go语言 robfig/cron包 实现定时 调用
    GitHub 添加 SSH keys
    Android 端外推送到底有多烦?
    Nats的消息通信模型
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/11996744.html
Copyright © 2011-2022 走看看