整个代码文件如下:
BertModel类实现了BERT模型,代码位于modeling.py模块中。
1.配置类(BertConfig)
这段代码定义了BERT模型的一些默认参数和4个文件处理函数。
参数:
- vocab_size:词表大小
- hidden_size:隐藏层神经元数
- num_hidden_layers:Transformer encoder中的隐藏层数
- num_attention_heads:multi-head attention 的head数
- intermediate_size:encoder的“中间”隐层神经元数(例如feed-forward layer)
- hidden_act:隐藏层激活函数
- hidden_dropout_prob:隐层dropout率
- attention_probs_dropout_prob:注意力部分的dropout
- max_position_embeddings:最大位置编码
- type_vocab_size:token_type_ids的词典大小
- initializer_range:truncated_normal_initializer初始化方法的stdev
函数:
- from_dict(cls,json_object):从字典中获取config参数;
- from_json(cls,json_file):从json文件中获取config参数;
- to_dict():将实例序列化为Python字典;
- to_json_string():将此实例序列化为JSON字符串。
class BertConfig(object): """Configuration for `BertModel`.""" def __init__(self, vocab_size, # 词表大小 hidden_size=768, # 隐藏层神经元数 num_hidden_layers=12, # transformer encoder中的隐藏层数 num_attention_heads=12, # multi-head attention中head的数量 intermediate_size=3072, # encoder的"中间"隐层神经元数 hidden_act="gelu",# 隐藏层激活函数 hidden_dropout_prob=0.1, # 隐层dropout率 attention_probs_dropout_prob=0.1, # 注意力部分的dropout max_position_embeddings=512, # 最大位置编码 type_vocab_size=16, # token_type_ids的词典大小 initializer_range=0.02): # 初始化方法的stdev """Constructs BertConfig. Args: vocab_size: Vocabulary size of `inputs_ids` in `BertModel`. hidden_size: Size of the encoder layers and the pooler layer. num_hidden_layers: Number of hidden layers in the Transformer encoder. num_attention_heads: Number of attention heads for each attention layer in the Transformer encoder. intermediate_size: The size of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act: The non-linear activation function (function or string) in the encoder and pooler. hidden_dropout_prob: The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob: The dropout ratio for the attention probabilities. max_position_embeddings: The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size: The vocabulary size of the `token_type_ids` passed into `BertModel`. initializer_range: The stdev of the truncated_normal_initializer for initializing all weight matrices. """ self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range @classmethod def from_dict(cls, json_object): """Constructs a `BertConfig` from a Python dictionary of parameters.""" config = BertConfig(vocab_size=None) for (key, value) in six.iteritems(json_object): config.__dict__[key] = value return config @classmethod def from_json_file(cls, json_file): """Constructs a `BertConfig` from a json file of parameters.""" with tf.gfile.GFile(json_file, "r") as reader: text = reader.read() return cls.from_dict(json.loads(text)) def to_dict(self): """Serializes this instance to a Python dictionary.""" output = copy.deepcopy(self.__dict__) return output def to_json_string(self): """Serializes this instance to a JSON string.""" return json.dumps(self.to_dict(), indent=2, sort_keys=True) + " "
2.获取词向量(embedding_lookup)
def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False)
功能:输入每句话每个单词的id,返回这句话的embedding表示(获得token embedding)
参数:
- input_ids:word id 【batch_size, seq_length】
- vocab_size:embedding词表
- embedding_size:embedding维度
- initializer_range:embedding初始化范围
- word_embedding_name:embeddding table命名
- use_one_hot_embeddings:是否使用one-hot embedding
返回:
- output:输出对应单词的词向量
[batch_size, seq_length, num_inputs*embedding_size]
- embedding table:单词对应embedding的表【batch_size, seq_length, embedding_size】
如果使用one-hot,则先对输入word_ids进行one-hot处理,再乘以embedding_table,得到对应word的词向量;不使用one-hot,直接用从embedding_table中获取对应word_ids的词向量。
def embedding_lookup(input_ids, vocab_size, embedding_size=128, initializer_range=0.02, word_embedding_name="word_embeddings", use_one_hot_embeddings=False): """Looks up words embeddings for id tensor. 获取词向量 Args: input_ids: int32 Tensor of shape [batch_size, seq_length] containing word ids. vocab_size: int. Size of the embedding vocabulary. embedding_size: int. Width of the word embeddings. initializer_range: float. Embedding initialization range. word_embedding_name: string. Name of the embedding table. use_one_hot_embeddings: bool. If True, use one-hot method for word embeddings. If False, use `tf.gather()`. Returns: float Tensor of shape [batch_size, seq_length, embedding_size]. """ # This function assumes that the input is of shape [batch_size, seq_length, # num_inputs]. # # If the input is a 2D tensor of shape [batch_size, seq_length], we # reshape to [batch_size, seq_length, 1]. if input_ids.shape.ndims == 2: input_ids = tf.expand_dims(input_ids, axis=[-1]) embedding_table = tf.get_variable( name=word_embedding_name, shape=[vocab_size, embedding_size], initializer=create_initializer(initializer_range)) flat_input_ids = tf.reshape(input_ids, [-1]) #【batch_size*seq_length*input_num】 if use_one_hot_embeddings: one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size) output = tf.matmul(one_hot_input_ids, embedding_table) else: output = tf.gather(embedding_table, flat_input_ids) input_shape = get_shape_list(input_ids) output = tf.reshape(output, input_shape[0:-1] + [input_shape[-1] * embedding_size]) return (output, embedding_table)
3.词向量的后续处理(embedding_postprocessor)
def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16,# 一般是2 token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512,#最大位置编码,必须大于等于max_seq_len dropout_prob=0.1):
功能:在token embedding的基础上,增加segment embedding和position embedding。
输入:
- input_tensor:float,[batch_size, seq_length, embedding_size].
- use_token_type: 布尔,是否添加‘token_type_ids’的embedding
- token_type_ids: (可选) int32,[batch_size, seq_length]. 只有use_token_type为True情况下使用
- token_type_vocab_size: int. “ token_type_ids”的词汇量
- token_type_embedding_name: string,token type ids的embedding table表名称
- use_position_embeddings: 布尔,是否添加position embeddings
- position_embedding_name: string,positional embedding的embedding table表名称
- initializer_range: float,权重初始化范围
- max_position_embeddings: int,此模型可能曾经使用的最大sequence长度。 该长度可以比input_tensor的序列长度长,但不能短。
- dropout_prob: float,应用于最终输出张量的dropout概率
def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16,# 一般是2 token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512,#最大位置编码,必须大于等于max_seq_len dropout_prob=0.1): """Performs various post-processing on a word embedding tensor. Args: input_tensor: float Tensor of shape [batch_size, seq_length, embedding_size]. use_token_type: bool. Whether to add embeddings for `token_type_ids`. token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length]. Must be specified if `use_token_type` is True. token_type_vocab_size: int. The vocabulary size of `token_type_ids`. token_type_embedding_name: string. The name of the embedding table variable for token type ids. use_position_embeddings: bool. Whether to add position embeddings for the position of each token in the sequence. position_embedding_name: string. The name of the embedding table variable for positional embeddings. initializer_range: float. Range of the weight initialization. max_position_embeddings: int. Maximum sequence length that might ever be used with this model. This can be longer than the sequence length of input_tensor, but cannot be shorter. dropout_prob: float. Dropout probability applied to the final output tensor. Returns: float tensor with same shape as `input_tensor`. Raises: ValueError: One of the tensor shapes or input values is invalid. """ input_shape = get_shape_list(input_tensor, expected_rank=3)#【batch_size,seq_length,embedding_size】 batch_size = input_shape[0] seq_length = input_shape[1] width = input_shape[2] output = input_tensor # Segment position信息 if use_token_type: if token_type_ids is None: raise ValueError("`token_type_ids` must be specified if" "`use_token_type` is True.") token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) # This vocab will be small so we always do one-hot here, since it is always # faster for a small vocabulary. flat_token_type_ids = tf.reshape(token_type_ids, [-1]) one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size) token_type_embeddings = tf.matmul(one_hot_ids, token_type_table) token_type_embeddings = tf.reshape(token_type_embeddings, [batch_size, seq_length, width]) output += token_type_embeddings # Position embedding信息 if use_position_embeddings: # 确保seq_length小于等于max_position_embeddings assert_op = tf.assert_less_equal(seq_length, max_position_embeddings) with tf.control_dependencies([assert_op]): full_position_embeddings = tf.get_variable( name=position_embedding_name, shape=[max_position_embeddings, width], initializer=create_initializer(initializer_range)) # Since the position embedding table is a learned variable, we create it # using a (long) sequence length `max_position_embeddings`. The actual # sequence length might be shorter than this, for faster training of # tasks that do not have long sequences. # # So `full_position_embeddings` is effectively an embedding table # for position [0, 1, 2, ..., max_positin_embeddings-1], and the current # sequence has positions [0, 1, 2, ... seq_length-1], so we can just # perform a slice. position_embeddings = tf.slice(full_position_embeddings, [0, 0], [seq_length, -1]) num_dims = len(output.shape.as_list()) # word embedding之后的tensor是[batch_size, seq_length, width] # 因为位置编码是与输入内容无关,它的shape总是[seq_length, width] # 我们无法把位置Embedding加到word embedding上 # 因此我们需要扩展位置编码为[1, seq_length, width] # 然后就能通过broadcasting加上去了。 # Only the last two dimensions are relevant (`seq_length` and `width`), so # we broadcast among the first dimensions, which is typically just # the batch size. position_broadcast_shape = [] for _ in range(num_dims - 2): position_broadcast_shape.append(1) position_broadcast_shape.extend([seq_length, width]) position_embeddings = tf.reshape(position_embeddings, position_broadcast_shape) output += position_embeddings output = layer_norm_and_dropout(output, dropout_prob) return output
4.构造attention_mask
def create_attention_mask_from_input_mask(from_tensor, to_mask): """Create 3D attention mask from a 2D tensor mask. Args: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. to_mask: int32 Tensor of shape [batch_size, to_seq_length]. Returns: float Tensor of shape [batch_size, from_seq_length, to_seq_length]. """
功能:从2维的mask生成3维的attention mask。
参数:
- from_tensor:padding后的input_ids,2D或者3D张量,[batch_size, from_seq_length,…]
- to_mask:mark标记向量[batch_size, to_seq_length]
返回:
- mask:[batch_size, from_seq_length, to_seq_length]
def create_attention_mask_from_input_mask(from_tensor, to_mask): """Create 3D attention mask from a 2D tensor mask. Args: from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...]. to_mask: int32 Tensor of shape [batch_size, to_seq_length]. Returns: float Tensor of shape [batch_size, from_seq_length, to_seq_length]. """ from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) batch_size = from_shape[0] from_seq_length = from_shape[1] to_shape = get_shape_list(to_mask, expected_rank=2) to_seq_length = to_shape[1] to_mask = tf.cast( tf.reshape(to_mask, [batch_size, 1, to_seq_length]), tf.float32) # We don't assume that `from_tensor` is a mask (although it could be). We # don't actually care if we attend *from* padding tokens (only *to* padding) # tokens so we create a tensor of all ones. # # `broadcast_ones` = [batch_size, from_seq_length, 1] broadcast_ones = tf.ones( shape=[batch_size, from_seq_length, 1], dtype=tf.float32) # Here we broadcast along two dimensions to create the mask. mask = broadcast_ones * to_mask return mask
5.注意力层(attention layer)
def attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None)
功能:实现multi-head attention,考虑key-query-value
形式的attention,输入的from_tensor
当做是query, to_tensor
当做是key和value,当两者相同的时候即为self-attention。
参数:
- from_tensor:[batch_size, from_seq_length, from_width]
- to_tensor:[batch_size, to_seq_length, to_width]
- attention_mask=None:[batch_size,from_seq_length, to_seq_length]
- num_attention_heads=1:attention head numbers
- size_per_head=512:每个head的大小
- query_act=None:query变换的激活函数
- key_act=None:key变换的激活函数
- value_act=None:value变换的激活函数
- attention_probs_dropout_prob=0.0:attention层的dropout
- initializer_range=0.02:初始化取值范围
- do_return_2d_tensor=False:是否返回2d张量,
- 如果True,输出形状[batch_size*from_seq_length,num_attention_heads*size_per_head]
- 如果False,输出形状[batch_size, from_seq_length, num_attention_heads*size_per_head]
- batch_size=None:如果输入是3D的, #那么batch就是第一维,但是可能3D的压缩成了2D的,所以需要告诉函数batch_size
- from_seq_length=None:同上
- to_seq_length=None:同上
具体过程参照:https://www.cnblogs.com/nxf-rabbit75/p/11945130.html
def attention_layer(from_tensor, to_tensor, attention_mask=None, num_attention_heads=1, size_per_head=512, query_act=None, key_act=None, value_act=None, attention_probs_dropout_prob=0.0, initializer_range=0.02, do_return_2d_tensor=False, batch_size=None, from_seq_length=None, to_seq_length=None): """Performs multi-headed attention from `from_tensor` to `to_tensor`. This is an implementation of multi-headed attention based on "Attention is all you Need". If `from_tensor` and `to_tensor` are the same, then this is self-attention. Each timestep in `from_tensor` attends to the corresponding sequence in `to_tensor`, and returns a fixed-with vector. This function first projects `from_tensor` into a "query" tensor and `to_tensor` into "key" and "value" tensors. These are (effectively) a list of tensors of length `num_attention_heads`, where each tensor is of shape [batch_size, seq_length, size_per_head]. Then, the query and key tensors are dot-producted and scaled. These are softmaxed to obtain attention probabilities. The value tensors are then interpolated by these probabilities, then concatenated back to a single tensor and returned. In practice, the multi-headed attention are done with transposes and reshapes rather than actual separate tensors. Args: from_tensor: float Tensor of shape [batch_size, from_seq_length, from_width]. to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width]. attention_mask: (optional) int32 Tensor of shape [batch_size, from_seq_length, to_seq_length]. The values should be 1 or 0. The attention scores will effectively be set to -infinity for any positions in the mask that are 0, and will be unchanged for positions that are 1. num_attention_heads: int. Number of attention heads. size_per_head: int. Size of each attention head. query_act: (optional) Activation function for the query transform. key_act: (optional) Activation function for the key transform. value_act: (optional) Activation function for the value transform. attention_probs_dropout_prob: (optional) float. Dropout probability of the attention probabilities. initializer_range: float. Range of the weight initializer. do_return_2d_tensor: bool. If True, the output will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]. If False, the output will be of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. batch_size: (Optional) int. If the input is 2D, this might be the batch size of the 3D version of the `from_tensor` and `to_tensor`. from_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `from_tensor`. to_seq_length: (Optional) If the input is 2D, this might be the seq length of the 3D version of the `to_tensor`. Returns: float Tensor of shape [batch_size, from_seq_length, num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is true, this will be of shape [batch_size * from_seq_length, num_attention_heads * size_per_head]). Raises: ValueError: Any of the arguments or tensor shapes are invalid. """ def transpose_for_scores(input_tensor, batch_size, num_attention_heads, seq_length, width): output_tensor = tf.reshape( input_tensor, [batch_size, seq_length, num_attention_heads, width]) output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3]) return output_tensor from_shape = get_shape_list(from_tensor, expected_rank=[2, 3]) to_shape = get_shape_list(to_tensor, expected_rank=[2, 3]) if len(from_shape) != len(to_shape): raise ValueError( "The rank of `from_tensor` must match the rank of `to_tensor`.") if len(from_shape) == 3: batch_size = from_shape[0] from_seq_length = from_shape[1] to_seq_length = to_shape[1] elif len(from_shape) == 2: if (batch_size is None or from_seq_length is None or to_seq_length is None): raise ValueError( "When passing in rank 2 tensors to attention_layer, the values " "for `batch_size`, `from_seq_length`, and `to_seq_length` " "must all be specified.") # Scalar dimensions referenced here: # B = batch size (number of sequences) # F = `from_tensor` sequence length # T = `to_tensor` sequence length # N = `num_attention_heads` # H = `size_per_head` from_tensor_2d = reshape_to_matrix(from_tensor) to_tensor_2d = reshape_to_matrix(to_tensor) # `query_layer` = [B*F, N*H] query_layer = tf.layers.dense( from_tensor_2d, num_attention_heads * size_per_head, activation=query_act, name="query", kernel_initializer=create_initializer(initializer_range)) # `key_layer` = [B*T, N*H] key_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=key_act, name="key", kernel_initializer=create_initializer(initializer_range)) # `value_layer` = [B*T, N*H] value_layer = tf.layers.dense( to_tensor_2d, num_attention_heads * size_per_head, activation=value_act, name="value", kernel_initializer=create_initializer(initializer_range)) # query_layer` = [B, N, F, H] query_layer = transpose_for_scores(query_layer, batch_size, num_attention_heads, from_seq_length, size_per_head) # `key_layer` = [B, N, T, H] key_layer = transpose_for_scores(key_layer, batch_size, num_attention_heads, to_seq_length, size_per_head) # Take the dot product between "query" and "key" to get the raw # attention scores. # `attention_scores` = [B, N, F, T] attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) attention_scores = tf.multiply(attention_scores, 1.0 / math.sqrt(float(size_per_head))) if attention_mask is not None: # `attention_mask` = [B, 1, F, T] attention_mask = tf.expand_dims(attention_mask, axis=[1]) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and -10000.0 for masked positions. adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0 # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_scores += adder # Normalize the attention scores to probabilities. # `attention_probs` = [B, N, F, T] attention_probs = tf.nn.softmax(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = dropout(attention_probs, attention_probs_dropout_prob) # `value_layer` = [B, T, N, H] value_layer = tf.reshape( value_layer, [batch_size, to_seq_length, num_attention_heads, size_per_head]) # `value_layer` = [B, N, T, H] value_layer = tf.transpose(value_layer, [0, 2, 1, 3]) # `context_layer` = [B, N, F, H] context_layer = tf.matmul(attention_probs, value_layer) # `context_layer` = [B, F, N, H] context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) if do_return_2d_tensor: # `context_layer` = [B*F, N*H] context_layer = tf.reshape( context_layer, [batch_size * from_seq_length, num_attention_heads * size_per_head]) else: # `context_layer` = [B, F, N*H] context_layer = tf.reshape( context_layer, [batch_size, from_seq_length, num_attention_heads * size_per_head]) return context_layer
6.Transformer
def transformer_model(input_tensor, # 【batch_size, seq_length, hidden_size】 attention_mask=None, # 【batch_size, seq_length, seq_length】 hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, # feed-forward层的激活函数 hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False)
功能:实现Transformer模型
参数:
- input_tensor:[batch_size, seq_length, hidden_size]
- attention_mask=None:[batch_size, seq_length, seq_length]
- hidden_size=768:Transformer隐藏层大小
- num_hidden_layers=12:Transformer的层(block)数
- num_attention_heads=12:attention头的数目
- intermediate_size=3072:transformer的“中间”隐层神经元数
- intermediate_act_fn=gelu:feed-forward层的激活函数
- hidden_dropout_prob=0.1
- attention_probs_dropout_prob=0.1
- initializer_range=0.02
- do_return_all_layers=False
def transformer_model(input_tensor, attention_mask=None, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, intermediate_act_fn=gelu, hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, initializer_range=0.02, do_return_all_layers=False): """Multi-headed, multi-layer Transformer from "Attention is All You Need". This is almost an exact implementation of the original Transformer encoder. See the original paper: https://arxiv.org/abs/1706.03762 Also see: https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py Args: input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size]. attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length, seq_length], with 1 for positions that can be attended to and 0 in positions that should not be. hidden_size: int. Hidden size of the Transformer. num_hidden_layers: int. Number of layers (blocks) in the Transformer. num_attention_heads: int. Number of attention heads in the Transformer. intermediate_size: int. The size of the "intermediate" (a.k.a., feed forward) layer. intermediate_act_fn: function. The non-linear activation function to apply to the output of the intermediate/feed-forward layer. hidden_dropout_prob: float. Dropout probability for the hidden layers. attention_probs_dropout_prob: float. Dropout probability of the attention probabilities. initializer_range: float. Range of the initializer (stddev of truncated normal). do_return_all_layers: Whether to also return all layers or just the final layer. Returns: float Tensor of shape [batch_size, seq_length, hidden_size], the final hidden layer of the Transformer. Raises: ValueError: A Tensor shape or parameter is invalid. """ if hidden_size % num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (hidden_size, num_attention_heads)) attention_head_size = int(hidden_size / num_attention_heads) input_shape = get_shape_list(input_tensor, expected_rank=3) batch_size = input_shape[0] seq_length = input_shape[1] input_width = input_shape[2] # The Transformer performs sum residuals on all layers so the input needs # to be the same as the hidden size. if input_width != hidden_size: raise ValueError("The width of the input tensor (%d) != hidden size (%d)" % (input_width, hidden_size)) # We keep the representation as a 2D tensor to avoid re-shaping it back and # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on # the GPU/CPU but may not be free on the TPU, so we want to minimize them to # help the optimizer. prev_output = reshape_to_matrix(input_tensor) all_layer_outputs = [] for layer_idx in range(num_hidden_layers): with tf.variable_scope("layer_%d" % layer_idx): layer_input = prev_output with tf.variable_scope("attention"): attention_heads = [] with tf.variable_scope("self"): attention_head = attention_layer( from_tensor=layer_input, to_tensor=layer_input, attention_mask=attention_mask, num_attention_heads=num_attention_heads, size_per_head=attention_head_size, attention_probs_dropout_prob=attention_probs_dropout_prob, initializer_range=initializer_range, do_return_2d_tensor=True, batch_size=batch_size, from_seq_length=seq_length, to_seq_length=seq_length) attention_heads.append(attention_head) attention_output = None if len(attention_heads) == 1: attention_output = attention_heads[0] else: # In the case where we have other sequences, we just concatenate # them to the self-attention head before the projection. attention_output = tf.concat(attention_heads, axis=-1) # Run a linear projection of `hidden_size` then add a residual # with `layer_input`. with tf.variable_scope("output"): attention_output = tf.layers.dense( attention_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) attention_output = dropout(attention_output, hidden_dropout_prob) attention_output = layer_norm(attention_output + layer_input) # The activation is only applied to the "intermediate" hidden layer. with tf.variable_scope("intermediate"): intermediate_output = tf.layers.dense( attention_output, intermediate_size, activation=intermediate_act_fn, kernel_initializer=create_initializer(initializer_range)) # Down-project back to `hidden_size` then add the residual. with tf.variable_scope("output"): layer_output = tf.layers.dense( intermediate_output, hidden_size, kernel_initializer=create_initializer(initializer_range)) layer_output = dropout(layer_output, hidden_dropout_prob) layer_output = layer_norm(layer_output + attention_output) prev_output = layer_output all_layer_outputs.append(layer_output) if do_return_all_layers: final_outputs = [] for layer_output in all_layer_outputs: final_output = reshape_from_matrix(layer_output, input_shape) final_outputs.append(final_output) return final_outputs else: final_output = reshape_from_matrix(prev_output, input_shape) return final_output
7.函数入口(init)
def __init__(self, config, # BertConfig对象 is_training, input_ids, # 【batch_size, seq_length】 input_mask=None, # 【batch_size, seq_length】 token_type_ids=None, # 【batch_size, seq_length】 use_one_hot_embeddings=False, # 是否使用one-hot;否则tf.gather() scope=None): config = copy.deepcopy(config) if not is_training: config.hidden_dropout_prob = 0.0 config.attention_probs_dropout_prob = 0.0 input_shape = get_shape_list(input_ids, expected_rank=2) batch_size = input_shape[0] seq_length = input_shape[1] # 不做mask,即所有元素为1 if input_mask is None: input_mask = tf.ones(shape=[batch_size, seq_length], dtype=tf.int32) if token_type_ids is None: token_type_ids = tf.zeros(shape=[batch_size, seq_length], dtype=tf.int32) with tf.variable_scope(scope, default_name="bert"): with tf.variable_scope("embeddings"): # word embedding (self.embedding_output, self.embedding_table) = embedding_lookup( input_ids=input_ids, vocab_size=config.vocab_size, embedding_size=config.hidden_size, initializer_range=config.initializer_range, word_embedding_name="word_embeddings", use_one_hot_embeddings=use_one_hot_embeddings) # 添加position embedding和segment embedding # layer norm + dropout self.embedding_output = embedding_postprocessor( input_tensor=self.embedding_output, use_token_type=True, token_type_ids=token_type_ids, token_type_vocab_size=config.type_vocab_size, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=config.initializer_range, max_position_embeddings=config.max_position_embeddings, dropout_prob=config.hidden_dropout_prob) with tf.variable_scope("encoder"): # input_ids是经过padding的word_ids: [25, 120, 34, 0, 0] # input_mask是有效词标记: [1, 1, 1, 0, 0] attention_mask = create_attention_mask_from_input_mask( input_ids, input_mask) # transformer模块叠加 # `sequence_output` shape = [batch_size, seq_length, hidden_size]. self.all_encoder_layers = transformer_model( input_tensor=self.embedding_output, attention_mask=attention_mask, hidden_size=config.hidden_size, num_hidden_layers=config.num_hidden_layers, num_attention_heads=config.num_attention_heads, intermediate_size=config.intermediate_size, intermediate_act_fn=get_activation(config.hidden_act), hidden_dropout_prob=config.hidden_dropout_prob, attention_probs_dropout_prob=config.attention_probs_dropout_prob, initializer_range=config.initializer_range, do_return_all_layers=True) # `self.sequence_output`是最后一层的输出,shape为【batch_size, seq_length, hidden_size】 self.sequence_output = self.all_encoder_layers[-1] # ‘pooler’部分将encoder输出【batch_size, seq_length, hidden_size】 # 转成【batch_size, hidden_size】 with tf.variable_scope("pooler"): # 取最后一层的第一个时刻[CLS]对应的tensor, 对于分类任务很重要 # sequence_output[:, 0:1, :]得到的是[batch_size, 1, hidden_size] # 我们需要用squeeze把第二维去掉 first_token_tensor = tf.squeeze(self.sequence_output[:, 0:1, :], axis=1) # 然后再加一个全连接层,输出仍然是[batch_size, hidden_size] self.pooled_output = tf.layers.dense( first_token_tensor, config.hidden_size, activation=tf.tanh, kernel_initializer=create_initializer(config.initializer_range))
举例:
# Already been converted into WordPiece token ids input_ids = tf.constant([[31, 51, 99], [15, 5, 0]]) input_mask = tf.constant([[1, 1, 1], [1, 1, 0]]) token_type_ids = tf.constant([[0, 0, 1], [0, 1, 0]]) config = modeling.BertConfig(vocab_size=32000, hidden_size=512, num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) model = modeling.BertModel(config=config, is_training=True, input_ids=input_ids, input_mask=input_mask, token_type_ids=token_type_ids) label_embeddings = tf.get_variable(...) pooled_output = model.get_pooled_output() logits = tf.matmul(pooled_output, label_embeddings)
参考文献:
【3】tf.one_hot()函数简介 - nini_coded的博客