一、tf.constant_initializer(value)
作用:将变量初始化为给定的常量,初始化一切所提供的值。
二、tf.zeros_initializer()
作用:将变量设置为全0;也可以简写为tf.Zeros()
三、tf.ones_initializer()
作用:将变量设置为全1;可简写为tf.Ones()
四、tf.random_normal_initializer(mean,stddev)
作用:将变量初始化为满足正太分布的随机值,主要参数(正太分布的均值和标准差),用所给的均值和标准差初始化均匀分布。
五、tf.truncated_normal_initializer(mean,stddev,seed,dtype)
作用:将变量初始化为满足正太分布的随机值,但如果随机出来的值偏离平均值超过2个标准差,那么这个数将会被重新随机。
- mean:用于指定均值;
- stddev用于指定标准差;
- seed:用于指定随机数种子;
- dtype:用于指定随机数的数据类型。通常只需要设定一个标准差stddev这一个参数就可以。
@tf_export("initializers.truncated_normal", "truncated_normal_initializer") class TruncatedNormal(Initializer): """Initializer that generates a truncated normal distribution. These values are similar to values from a `random_normal_initializer` except that values more than two standard deviations from the mean are discarded and re-drawn. This is the recommended initializer for neural network weights and filters. Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. 一个python标量或一个标量张量。要生成的随机值的均值 stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate.一个python标量或一个标量张量。要生成的随机值的标准偏差。 seed: A Python integer. Used to create random seeds. See `tf.set_random_seed` for behavior.一个Python整数。用于创建随机种子。查看 tf.set_random_seed 行为。 dtype: The data type. Only floating point types are supported.数据类型。只支持浮点类型。 """ def __init__(self, mean=0.0, stddev=1.0, seed=None, dtype=dtypes.float32): self.mean = mean self.stddev = stddev self.seed = seed self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype)) def __call__(self, shape, dtype=None, partition_info=None): if dtype is None: dtype = self.dtype return random_ops.truncated_normal( shape, self.mean, self.stddev, dtype, seed=self.seed) def get_config(self): return { "mean": self.mean, "stddev": self.stddev, "seed": self.seed, "dtype": self.dtype.name }
举例:bert中初始化token_type_embeddings、embedding_table时,假设token_type_embeddings服从正态分布
def embedding_postprocessor(input_tensor, use_token_type=False, token_type_ids=None, token_type_vocab_size=16, token_type_embedding_name="token_type_embeddings", use_position_embeddings=True, position_embedding_name="position_embeddings", initializer_range=0.02, max_position_embeddings=512, dropout_prob=0.1): ... if use_token_type: if token_type_ids is None: raise ValueError("`token_type_ids` must be specified if" "`use_token_type` is True.") token_type_table = tf.get_variable( name=token_type_embedding_name, shape=[token_type_vocab_size, width], initializer=create_initializer(initializer_range)) ... def create_initializer(initializer_range=0.02): """Creates a `truncated_normal_initializer` with the given range.""" return tf.truncated_normal_initializer(stddev=initializer_range)
六、tf.random_uniform_initializer(a,b,seed,dtype)
作用:从a到b均匀初始化,将变量初始化为满足均匀分布的随机值,主要参数(最大值,最小值)。
七、tf.uniform_unit_scaling_initializer(factor,seed,dtypr)
作用:将变量初始化为满足均匀分布但不影响输出数量级的随机值