import numpy as np np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers import Dense from keras.models import load_model # create some data X = np.linspace(-1, 1, 200) np.random.shuffle(X) # randomize the data Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, )) X_train, Y_train = X[:160], Y[:160] # first 160 data points X_test, Y_test = X[160:], Y[160:] # last 40 data points model = Sequential() model.add(Dense(output_dim=1, input_dim=1)) model.compile(loss='mse', optimizer='sgd') for step in range(301): cost = model.train_on_batch(X_train, Y_train) # save print('test before save: ', model.predict(X_test[0:2])) model.save('my_model.h5') # HDF5 file, you have to pip3 install h5py if don't have it del model # deletes the existing model # load model = load_model('my_model.h5') print('test after load: ', model.predict(X_test[0:2])) """ # save and load weights model.save_weights('my_model_weights.h5') model.load_weights('my_model_weights.h5') # save and load fresh network without trained weights from keras.models import model_from_json json_string = model.to_json() model = model_from_json(json_string) """