zoukankan      html  css  js  c++  java
  • keras之save & reload model

    import numpy as np
    np.random.seed(1337)  # for reproducibility
     
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.models import load_model
     
    # create some data
    X = np.linspace(-1, 1, 200)
    np.random.shuffle(X)    # randomize the data
    Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, ))
    X_train, Y_train = X[:160], Y[:160]     # first 160 data points
    X_test, Y_test = X[160:], Y[160:]       # last 40 data points
    model = Sequential()
    model.add(Dense(output_dim=1, input_dim=1))
    model.compile(loss='mse', optimizer='sgd')
    for step in range(301):
        cost = model.train_on_batch(X_train, Y_train)
     
    # save
    print('test before save: ', model.predict(X_test[0:2]))
    model.save('my_model.h5')   # HDF5 file, you have to pip3 install h5py if don't have it
    del model  # deletes the existing model
     
    # load
    model = load_model('my_model.h5')
    print('test after load: ', model.predict(X_test[0:2]))
    """
    # save and load weights
    model.save_weights('my_model_weights.h5')
    model.load_weights('my_model_weights.h5')
    # save and load fresh network without trained weights
    from keras.models import model_from_json
    json_string = model.to_json()
    model = model_from_json(json_string)
    """
  • 相关阅读:
    数据库连接池实现
    Linux array_vpnc
    MVC小结
    Linux和Windows下 classpath 的差异
    无法删除DLL文件解决方法(转)
    电信工程管理方法
    常用设计思想
    MAX262使用说明
    基于FPGA的FIR滤波器(草稿)
    数字存储示波器(草稿)
  • 原文地址:https://www.cnblogs.com/nxf-rabbit75/p/9991959.html
Copyright © 2011-2022 走看看