这是SEnet 的特征融合部分,
import tensorflow as tf
from tflearn.layers.conv import global_avg_pool
class SE_layer():
def __init__(self, x, training=True):
self.training = training
def Global_Average_Pooling(self, x):
return global_avg_pool(x, name='Global_avg_pooling')
def Fully_connected(self, x, units=3, layer_name='fully_connected') :
with tf.name_scope(layer_name) :
return tf.layers.dense(inputs=x, use_bias=False, units=units)
def Relu(self, x):
return tf.nn.relu(x)
def Sigmoid(self, x) :
return tf.nn.sigmoid(x)
def squeeze_excitation_layer(self, input_x, ratio, layer_name):
with tf.name_scope(layer_name) :
squeeze = self.Global_Average_Pooling(input_x)
excitation = self.Fully_connected(squeeze, units=int(input_x.shape[3])/ratio, layer_name=layer_name+'_fully_connected1')
excitation = self.Relu(excitation)
excitation = self.Fully_connected(excitation, units=int(input_x.shape[3]), layer_name=layer_name+'_fully_connected2')
excitation = self.Sigmoid(excitation)
dim3 = int(input_x.shape[3])
excitation = tf.reshape(excitation, [-1,1,1, dim3])
scale = input_x * excitation
return scale
if __name__=="__main__":
input_data = tf.random_uniform([2, 70, 80, 3], 0, 255)
semodule = SE_layer(input_data)
output = semodule.squeeze_excitation_layer(input_data, 1, 'first')
print(output.shape)
注意:
暂时还不知道效果如何,可以测试一下。这个和cfe一样都是不改变shape的module,可以多关注一下。