zoukankan      html  css  js  c++  java
  • LateX输入数学公式

    转自:http://www.cnblogs.com/obama/archive/2013/04/27/3048198.html
    Derivatives, Limits, Sums and Integrals

    The expressions

    [GIF Image]

    are obtained in LaTeX by typing \frac{du}{dt} and \frac{d^2 u}{dx^2} respectively. The mathematical symbol [GIF Image] is produced using \partial. Thus the Heat Equation

    [GIF Image]

    is obtained in LaTeX by typing

    \[ \frac{\partial u}{\partial t}
       = h^2 \left( \frac{\partial^2 u}{\partial x^2}
          + \frac{\partial^2 u}{\partial y^2}
          + \frac{\partial^2 u}{\partial z^2} \right) \]

    To obtain mathematical expressions such as

    [GIF Image]

    in displayed equations we type \lim_{x \to +\infty}, \inf_{x > s} and \sup_K respectively. Thus to obtain

    [GIF Image]

    (in LaTeX) we type

    \[ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.\] 

    To obtain a summation sign such as

    [GIF Image]

    we type \sum_{i=1}^{2n}. Thus

    [GIF Image]

    is obtained by typing

    \[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).\] 

    We now discuss how to obtain integrals in mathematical documents. A typical integral is the following:

    [GIF Image]

    This is typeset using

    \[ \int_a^b f(x)\,dx.\] 

    The integral sign [GIF Image] is typeset using the control sequence \int, and the limits of integration (in this case a and b are treated as a subscript and a superscript on the integral sign.

    Most integrals occurring in mathematical documents begin with an integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dx, dy and dt. To obtain the correct appearance one should put extra space before the d, using \,. Thus

    [GIF Image]
    [GIF Image]
    [GIF Image]

    and

    [GIF Image]

    are obtained by typing

    \[ \int_0^{+\infty} x^n e^{-x} \,dx = n!.\] 
    \[ \int \cos \theta \,d\theta = \sin \theta.\] 
    \[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
       = \int_{\theta=0}^{2\pi} \int_{r=0}^R
          f(r\cos\theta,r\sin\theta) r\,dr\,d\theta.\] 

    and

    \[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).\] 

    respectively.

    In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence \! to remove a thin strip of unwanted space. Thus, for example, the multiple integral

    [GIF Image]

    is obtained by typing

    \[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy.\] 

    Had we typed

    \[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy.\] 

    we would have obtained

    [GIF Image]

    A particularly noteworthy example comes when we are typesetting a multiple integral such as

    [GIF Image]

    Here we use \! three times to obtain suitable spacing between the integral signs. We typeset this integral using

    \[ \int \!\!\! \int_D f(x,y)\,dx\,dy.\] 

    Had we typed

    \[ \int \int_D f(x,y)\,dx\,dy.\] 

    we would have obtained

    [GIF Image]

    The following (reasonably complicated) passage exhibits a number of the features which we have been discussing:

    [GIF Image]

    One would typeset this in LaTeX by typing

    In non-relativistic wave mechanics, the wave function
    $\psi(\mathbf{r},t)$ of a particle satisfies the
    \emph{Schr\"{o}dinger Wave Equation}
    \[ i\hbar\frac{\partial \psi}{\partial t}
      = \frac{-\hbar^2}{2m} \left(
        \frac{\partial^2}{\partial x^2}
        + \frac{\partial^2}{\partial y^2}
        + \frac{\partial^2}{\partial z^2}
      \right) \psi + V \psi.\] 
    It is customary to normalize the wave equation by
    demanding that
    \[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
          \left| \psi(\mathbf{r},0) \right|^2\,dx\,dy\,dz = 1.\] 
    A simple calculation using the Schr\"{o}dinger wave
    equation shows that
    \[ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
          \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 0,\] 
    and hence
    \[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
          \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 1\] 
    for all times~$t$. If we normalize the wave function in this
    way then, for any (measurable) subset~$V$ of $\textbf{R}^3$
    and time~$t$,
    \[ \int \!\!\! \int \!\!\! \int_V
          \left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz\] 
    represents the probability that the particle is to be found
    within the region~$V$ at time~$t$.
  • 相关阅读:
    如何利用python制作微信好友头像照片墙?
    机器学习入门路线和资源
    突然“被辞职”的时候,原来可以拿到这么多钱!
    一个致命的 Redis 命令,导致公司损失 400 万
    程序员:想知道你每天按了多少次键盘吗?
    想了解真实的中国历史吗?建议看看这10部历史纪录片,受益终生!
    SpringBlade 2.0-RC3 发布,全新的微服务开发平台
    Syncd-开源自动化部署工具
    学习Spring Boot看这两个开源项目就够了!非得值得收藏的资源
    大型视频直播平台架构由浅入深详细讲解
  • 原文地址:https://www.cnblogs.com/obama/p/3048198.html
Copyright © 2011-2022 走看看