zoukankan      html  css  js  c++  java
  • MagicSuggest可输可选控件

    可输入可选择控件地址:http://nicolasbize.com/magicsuggest/doc.html

    js:

    <link href="../../scripts/comboxselect/magicsuggest-min.css" rel="stylesheet" />
    <script src="../../scripts/comboxselect/magicsuggest-min.js" type="text/javascript"></script>

    <script>

    /***************************绑定设计师和模特start**********************************/
    var json = <%=jsonString%>
    $('#comboBoxDesigner').magicSuggest({
    allowFreeEntries: false,//如果你不需要用户自已创建标签,则用这个
    maxSelection:1,//设置选择个数
    data: json,
    style: '283px;border: 1px solid #cccccc;',//自定义CSS
    //maxSelectionRenderer: null,
    selectFirst: true,
    placeholder: "请选择",
    valueField :'id',//定义键值
    displayField: 'dName',//定义显示的字段
    selectionRenderer: function (data) { //想让标签里显示啥就看这个
    //$("#txtprice").val(data.id);
    return data.dCall + '/' + data.dName + '/' + data.constellation;
    }
    });

    </script>

    <script type="text/javascript">

    function GetComboBoxValue() {
    var desingner = $('#comboBoxDesigner').magicSuggest().getValue();
    $("#hidDesigenr").val(desingner);

    //alert(desingner + modeler);
    }
    window.onload=function(){
    var design =[<%=designer%>]
    $('#comboBoxDesigner').magicSuggest().setValue(design)

    //do something
    }

    </script>

    html:

    <input id="hidDesigenr" type="hidden" runat="server" />
    <input id="comboBoxDesigner" name="comboBoxDesigner" type="text"/>

    aspx.cs:

    #region 绑定设计师和模特及加工厂、工艺=================================
    private void RptBindCombo()
    {
    BLL.dt_designer dbll = new dt_designer();
    DataTable ddt = dbll.GetAllList().Tables[0];
    jsonString = MyCommFun.DataTableToJson(ddt);


    }

    这些都是博主多年积累的,有些可能是别人的,但博主已经不记得来自哪里了,就不特殊标出了,望见谅!!!!
  • 相关阅读:
    BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)
    bzoj4873: [Shoi2017]寿司餐厅(最大权闭合子图)
    bzoj1497: [NOI2006]最大获利(最大权闭合子图)
    bzoj1607: [Usaco2008 Dec]Patting Heads 轻拍牛头
    bzoj1024: [SCOI2009]生日快乐
    bzoj2761: [JLOI2011]不重复数字
    bzoj1257: [CQOI2007]余数之和sum
    bzoj2456: mode
    bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
    bzoj2431: [HAOI2009]逆序对数列
  • 原文地址:https://www.cnblogs.com/objectxhy/p/6742965.html
Copyright © 2011-2022 走看看