zoukankan      html  css  js  c++  java
  • POJ 3176.Cow Bowling

    Cow Bowling
    Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

              7 

    3 8

    8 1 0

    2 7 4 4

    4 5 2 6 5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 

              7 
    *
    3 8
    *
    8 1 0
    *
    2 7 4 4
    *
    4 5 2 6 5
    The highest score is achievable by traversing the cows as shown above.

     非常明显的dp+贪心

    对于n行的三角形,其一共有 n*(n+1)/2 个数

    dp[left(i)] = max{ dp[left(i) , dp[i] + a[left(i)] }

    dp[left(i+1)+1] = max{ dp[left(i)+1] , dp[i] + a[left(i)+1] }

    其中,left(i)表示i下一层左边的数

    AC代码:GitHub

     1 /*
     2 By:OhYee
     3 Github:OhYee
     4 HomePage:http://www.oyohyee.com
     5 Email:oyohyee@oyohyee.com
     6 Blog:http://www.cnblogs.com/ohyee/
     7 
     8 かしこいかわいい?
     9 エリーチカ!
    10 要写出来Хорошо的代码哦~
    11 */
    12 
    13 #include <cstdio>
    14 #include <algorithm>
    15 #include <cstring>
    16 #include <cmath>
    17 #include <string>
    18 #include <iostream>
    19 #include <vector>
    20 #include <list>
    21 #include <queue>
    22 #include <stack>
    23 #include <map>
    24 using namespace std;
    25 
    26 //DEBUG MODE
    27 #define debug 0
    28 
    29 //循环
    30 #define REP(n) for(int o=0;o<n;o++)
    31 
    32 #define t(n) (((n) * ((n)+1))/2)
    33 
    34 const int maxn = 1005;
    35 int n;
    36 int a[t(maxn)];
    37 int dp[t(maxn)];
    38 
    39 int left(int n) {
    40     int i;
    41     for(i = 0;t(i) < n;i++);
    42     return n + i;
    43 }
    44 
    45 bool Do() {
    46     if(scanf("%d",&n) == EOF)
    47         return false;
    48     for(int i = 1;i <= t(n);i++)
    49         scanf("%d",&a[i]);
    50 
    51     memset(dp,0,sizeof(dp));
    52     for(int i = 0;i <= t(n - 1);i++) {
    53         dp[left(i)] = max(dp[left(i)],dp[i] + a[left(i)]);
    54         dp[left(i) + 1] = max(dp[left(i) + 1],dp[i] + a[left(i) + 1]);
    55     }
    56 
    57     int Max = -1;
    58     for(int i = t(n - 1) + 1;i <= t(n);i++)
    59         Max = max(Max,dp[i]);
    60 
    61     printf("%d
    ",Max);
    62     return true;
    63 }
    64 
    65 int main() {
    66     while(Do());
    67     return 0;
    68 }
  • 相关阅读:
    外贸视频教程[外贸人zencart自助建站视频教程]:第一课
    外贸视频教程[外贸人zencart自助建站视频教程]:第二课
    行sqlSQL*PLUS使用(三)
    消息函数windows 程序设计 第三章 (下)
    优化性能[置顶] Android应用性能优化方案
    自定义方法JSP自定义标签
    发票名称<iframe name=document.getElementById("cellFrame").src = "dyszAction!showFpDyMb.do?fpzldm=" + fpzldm;
    纹理寻址DirectX入门 (8) TextureAddressMode
    空间复杂度分段分段有序数组合并成有序(空间复杂度为O(1))
    数据库生成T4模版在代码生成中的应用心得
  • 原文地址:https://www.cnblogs.com/ohyee/p/5451752.html
Copyright © 2011-2022 走看看