求出1到N的阶乘中与M的阶乘互质的数的个数,对R取模,多组询问,R<=10^9+10,T<=10000,1 < = N , M < = 10000000
1到(M!)中与(M!)互质的数显然为(varphi(M)),由于(N!)是(M!)的倍数,所以一共有(frac {N!}{M!})组数,每组数都有(varphi(M))个数字与(M!)互质,所以答案为(frac{N!}{M!}varphi(M!))
根据(varphi)的计算式,枚举(M!)所有素数计算即可,即1~M的素数,显然可以预处理,设n=10000000,由于1~n内素数为(frac{n}{ln n})个,而每个素数由于需要计算逆元,需要时间为(O(log n)),总复杂度为(O(n)),预处理阶乘每次询问直接乘即可,询问复杂度(O(1)),预处理复杂度(O(n))
#include <cstdio>
using namespace std;
bool vis[10000010];
int prime[10000010], tot, fuck = 10000000;
int prod[10000010], p;
int fac[10000010];
int qpow(int x, int y)
{
int res = 1;
for (x %= p; y > 0; y >>= 1, x = x * (long long)x % p) if (y & 1) res = res * (long long)x % p;
return res;
}
int main()
{
int t; scanf("%d%d", &t, &p);
prod[1] = fac[1] = fac[0] = 1;
for (int i = 2; i <= fuck; i++)
{
if (vis[i] == false) prime[++tot] = i, prod[i] = (i - 1) * (long long)qpow(i, p - 2) % p;
else prod[i] = 1;
for (int j = 1; j <= tot && i * prime[j] <= fuck; j++)
{
vis[i * prime[j]] = true;
if (i % prime[j] == 0) break;
}
prod[i] = prod[i] * (long long)prod[i - 1] % p;
fac[i] = i * (long long)fac[i - 1] % p;
}
while (t --> 0)
{
int n, m;
scanf("%d%d", &n, &m);
printf("%d
", (int)(fac[n] * (long long)prod[m] % p));
}
return 0;
}
38行一遍A
upd:观察了pinkrabbit的题解,发现这么写是错的,对于n>=r的情况,n中的因子r可能会和phi中的逆元消掉(phi中因子没有逆元的假象掩盖了事实)
解决方法类似扩展卢卡斯,记录成(x*y^b)的形式。不过感觉出题人不会弄成这么毒瘤,除了你谷的管理员加强数据,就不改了,长个记性就行。。。真相:由于懒癌