题目大意:给定一个N个点的树,每个点有一个颜色
有M次操作,每次可以修改树某条链所有点变成一个颜色,查询某条链上点的颜色段数
树剖,线段树维护区间合并
我的代码记录的是某个区间左端点颜色、右端点颜色、除了左端点和右端点的颜色段数
需要稍微特殊处理一些情况,详见代码
#include <cstdio>
#include <vector>
using namespace std;
struct fuck
{
int l, r, cnt; //cnt=-1代表lcol=rcol 区间内只有一种颜色,-2代表区间是空的
fuck(){}
fuck(int col) : l(col), r(col), cnt(-1) {}
fuck(int l, int r, int cnt) : l(l), r(r), cnt(cnt) {}
};
fuck operator*(const fuck &l, const fuck &r)
{
if (l.cnt == -2) return r;
if (r.cnt == -2) return l;
if (l.cnt == -1 && r.cnt == -1)
{
if (l.l == r.l) return fuck(l.l, l.l, -1);
else return fuck(l.l, r.l, 0);
}
else if (l.cnt == -1)
{
if (l.l == r.l) return r;
else return fuck(l.l, r.r, r.cnt + 1);
}
else if (r.cnt == -1)
{
if (l.r == r.l) return l;
else return fuck(l.l, r.l, l.cnt + 1);
}
else
{
return fuck(l.l, r.r, l.cnt + r.cnt + 2 - (l.r == r.l));
}
}
vector<int> out[100010];
int n, m, col[100010];
int fa[100010], depth[100010], weight[100010], wson[100010];
int dfn[100010], top[100010], id[100010], tot;
fuck tree[400010]; int lazy[400010];
fuck rev(const fuck &x)
{
return fuck(x.r, x.l, x.cnt);
}
void dfs1(int x)
{
weight[x] = 1, wson[x] = -1;
for (int i : out[x])
if (fa[x] != i)
{
fa[i] = x, depth[i] = depth[x] + 1;
dfs1(i);
weight[x] += weight[i];
if (wson[x] == -1 || weight[i] > weight[wson[x]]) wson[x] = i;
}
}
void dfs2(int x, int topf)
{
dfn[x] = ++tot, top[x] = topf, id[tot] = x;
if (wson[x] != -1)
{
dfs2(wson[x], topf);
for (int i : out[x])
if (i != fa[x] && i != wson[x])
dfs2(i, i);
}
}
void build(int x, int cl, int cr)
{
if (cl == cr)
{
tree[x] = fuck(col[id[cl]]);
return;
}
int mid = (cl + cr) / 2;
build(x * 2, cl, mid);
build(x * 2 + 1, mid + 1, cr);
tree[x] = tree[x * 2] * tree[x * 2 + 1];
}
void pushdown(int x)
{
if (lazy[x])
{
tree[x * 2] = tree[x * 2 + 1] = fuck(lazy[x]);
lazy[x * 2] = lazy[x * 2 + 1] = lazy[x];
lazy[x] = 0;
}
}
void chenge(int x, int cl, int cr, int L, int R, int col)
{
if (R < cl || cr < L) return;
if (L <= cl && cr <= R)
{
tree[x] = fuck(col);
lazy[x] = col;
return;
}
pushdown(x);
int mid = (cl + cr) / 2;
chenge(x * 2, cl, mid, L, R, col);
chenge(x * 2 + 1, mid + 1, cr, L, R, col);
tree[x] = tree[x * 2] * tree[x * 2 + 1];
}
fuck query(int x, int cl, int cr, int L, int R)
{
if (R < cl || cr < L) return fuck(0, 0, -2);
if (L <= cl && cr <= R) return tree[x];
pushdown(x);
int mid = (cl + cr) / 2;
return query(x * 2, cl, mid, L, R) * query(x * 2 + 1, mid + 1, cr, L, R);
}
int main()
{
freopen("paint.in", "r", stdin);
freopen("paint.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &col[i]);
for (int x, y, i = 1; i < n; i++) scanf("%d%d", &x, &y), out[x].push_back(y), out[y].push_back(x);
dfs1(1), dfs2(1, 1);
build(1, 1, n);
char ch;
for (int x, y, z, i = 1; i <= m; i++)
{
scanf(" %c%d%d", &ch, &x, &y);
if (ch == 'C')
{
scanf("%d", &z);
while (top[x] != top[y])
{
if (depth[top[x]] < depth[top[y]]) swap(x, y);
chenge(1, 1, n, dfn[top[x]], dfn[x], z);
x = fa[top[x]];
}
if (depth[x] > depth[y]) swap(x, y);
chenge(1, 1, n, dfn[x], dfn[y], z);
}
else
{
fuck ans1(0, 0, -2), ans2(0, 0, -2);
while (top[x] != top[y])
{
if (depth[top[x]] < depth[top[y]]) swap(x, y), swap(ans1, ans2);
ans1 = query(1, 1, n, dfn[top[x]], dfn[x]) * ans1;
x = fa[top[x]];
}
if (depth[x] > depth[y]) swap(x, y), swap(ans1, ans2);
fuck ans = rev(ans1) * query(1, 1, n, dfn[x], dfn[y]) * ans2;
printf("%d
", ans.cnt + 2);
}
}
fclose(stdin);
fclose(stdout);
return 0;
}