卡特兰数
定义设h[i]为卡特兰数的第i项,则h[i]=sum(j=0 to j=i-1)h[j]*h[i-j-1]
公式
网上许多博客的公式是错的,我在这里整理一些正确的公式
1.递推式1(定义式):f(n)=sigma(f[i]*f[n-i-1])(0<=i<=n-1)
2.递推式2:f(n+1)=f(n)*(4n+2)/(n+2);
f[n]=f(n-1)*(4n-2)/(n+1)
注:递推式中f(0)=1;
3.通项公式1:f(n)=C(2n,n)/(n+1);
4.通项公式2:f(n)=C(2n,n)-C(2n,n+1);
证明 博客推荐:(部分内容来自此博客)
https://www.cnblogs.com/zyt1253679098/p/9190217.html
在上文提到的出栈序列的问题情景中,如果有n个元素,在平面直角坐标系中用x坐标表示入栈数,y坐标表示出栈数,则坐标(a,b)表示目前已经进行了a次入栈和b次出栈,则再进行一次入栈就是走到(a+1,b),再进行一次出栈就是走到(a,b+1)。并且,由于入栈数一定小于等于出栈数,所以路径不能跨越直线y=x
因此,题目相当于求从(0,0)走到(n,n)且不跨越直线y=x的方案数
方案数=总方案数-不合法方案数;
首先,如果不考虑不能跨越直线y=x的要求,相当于从2n次操作中选n次进行入栈,相当于从2n个位置选n个位置作为入栈时间,则方案数为C(2n,n),这是总方案数。
然后,考虑对于一种不合法的方案,一定在若干次操作后有一次出栈数比入栈数多一次,这个点在直线y=x+1上。那么把第一次碰到该直线以后的部分关于该直线对称,则最终到达的点是(n−1,n+1) 。
显然,任何非法方案都可以通过此方式变成一条从(0,0)到(n−1,n+1)的路径,任何一条从(0,0)到(n−1,n+1)的路径都可以对应一种非法方案,相当于形成了方案与路径的双射。(证明:能走到(n-1,n+1)->经过直线y=x+1->不合法方案;合法方案-->不会有点在y=x+1上-->无论沿路径上哪一点对称,对称后的路径都存在断层-->这不是一条路径)。于是,我们证明了不合法方案与从(0,0)到(n−1,n+1)的无限制路径的一一对应关系。而从(0,0)到(n−1,n+1)的无限制路径有C(2n,n-1)种,所以不合法方案一共有C(2n,n-1)种。而任何合法方案由于不接触直线y=x+1,无论从哪个点对称都不是一条连续的路径。由于合法方案数就是Catalan[n],所以:
Catalan[n]=C(2n,n)−C(2n,n-1)
(卡特兰数其他公式的数学证明详见推荐的博客,~~打符号太麻烦了~~)
应用
1、一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?
2、n个节点构成的二叉树,共有多少种情形?
3、求一个凸多边形区域划分成三角形区域的方法数?
4、在圆上选择2n个点,将这些点成对链接起来使得所得到的n条线段不相交,一共有多少种方法?(下图供参考)
5、n* n的方格地图中,从一个角到另外一个角,不跨越对角线的路径数为h(n)
6、n层的阶梯切割为n个矩形的切法数也是。
卡特兰数的前一百位
//以下数据是从1开始的
//写递推程序时一定要先写h[0]=1;
string catalan[]={
"1",
"2",
"5",
"14",
"42",
"132",
"429",
"1430",
"4862",
"16796",
"58786",
"208012",
"742900",
"2674440",
"9694845",
"35357670",
"129644790",
"477638700",
"1767263190",
"6564120420",
"24466267020",
"91482563640",
"343059613650",
"1289904147324",
"4861946401452",
"18367353072152",
"69533550916004",
"263747951750360",
"1002242216651368",
"3814986502092304",
"14544636039226909",
"55534064877048198",
"212336130412243110",
"812944042149730764",
"3116285494907301262",
"11959798385860453492",
"45950804324621742364",
"176733862787006701400",
"680425371729975800390",
"2622127042276492108820",
"10113918591637898134020",
"39044429911904443959240",
"150853479205085351660700",
"583300119592996693088040",
"2257117854077248073253720",
"8740328711533173390046320",
"33868773757191046886429490",
"131327898242169365477991900",
"509552245179617138054608572",
"1978261657756160653623774456",
"7684785670514316385230816156",
"29869166945772625950142417512",
"116157871455782434250553845880",
"451959718027953471447609509424",
"1759414616608818870992479875972",
"6852456927844873497549658464312",
"26700952856774851904245220912664",
"104088460289122304033498318812080",
"405944995127576985730643443367112",
"1583850964596120042686772779038896",
"6182127958584855650487080847216336",
"24139737743045626825711458546273312",
"94295850558771979787935384946380125",
"368479169875816659479009042713546950",
"1440418573150919668872489894243865350",
"5632681584560312734993915705849145100",
"22033725021956517463358552614056949950",
"86218923998960285726185640663701108500",
"337485502510215975556783793455058624700",
"1321422108420282270489942177190229544600",
"5175569924646105559418940193995065716350",
"20276890389709399862928998568254641025700",
"79463489365077377841208237632349268884500",
"311496878311103321137536291518809134027240",
"1221395654430378811828760722007962130791020",
"4790408930363303911328386208394864461024520",
"18793142726809884575211361279087545193250040",
"73745243611532458459690151854647329239335600",
"289450081175264899454283846029490767264392230",
"1136359577947336271931632877004667456667613940",
"4462290049988320482463241297506133183499654740",
"17526585015616776834735140517915655636396234280",
"68854441132780194707888052034668647142985206100",
"270557451039395118028642463289168566420671280440",
"1063353702922273835973036658043476458723103404520",
"4180080073556524734514695828170907458428751314320",
"16435314834665426797069144960762886143367590394940",
"64633260585762914370496637486146181462681535261000",
"254224158304000796523953440778841647086547372026600",
"1000134600800354781929399250536541864362461089950800",
"3935312233584004685417853572763349509774031680023800",
"15487357822491889407128326963778343232013931127835600",
"60960876535340415751462563580829648891969728907438000",
"239993345518077005168915776623476723006280827488229600",
"944973797977428207852605870454939596837230758234904050",
"3721443204405954385563870541379246659709506697378694300",
"14657929356129575437016877846657032761712954950899755100",
"57743358069601357782187700608042856334020731624756611000",
"227508830794229349661819540395688853956041682601541047340",
"896519947090131496687170070074100632420837521538745909320"
};