(color{#0066ff}{ 题目描述 })
给出 (n-1) 次多项式 (A(x)),求一个 (mod{:x^n}) 下的多项式 (B(x)),满足 (B(x) equiv e^{A(x)})
(color{#0066ff}{输入格式})
第一行一个整数 (n).
下一行有 (n) 个整数,依次表示多项式的系数 (a_0, a_1, cdots, a_{n-1})
保证 (a_0 = 0).
(color{#0066ff}{输出格式})
输出 (n) 个整数,表示答案多项式中的系数 (a_0, a_1, cdots, a_{n-1}).
(color{#0066ff}{输入样例})
6
0 927384623 817976920 427326948 149643566 610586717
(color{#0066ff}{输出样例})
1 927384623 878326372 3882 273455637 998233543
(color{#0066ff}{数据范围与提示})
对于 (100\%)的数据,(n le 10^5).
(color{#0066ff}{ 题解 })
牛顿迭代搞一下
(F(x)=e^{A(x)})
(ln F(x)=A(x))
(G(F(x))=ln (F(x))-A(x))
(G'(F(x))=frac{1}{F(X)})
(F(x)=F_0(x)-frac{ln(F_0(x)-A(x))}{frac{1}{F_0(x)}}=F_0(x)*(1-ln(F_0(x))+A(x)))
求ln见另一篇blog,qwq
递归求解就行了
因为保证(a_0=0),而(e^0=1),所以递归边界返回1就行了
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
using std::vector;
const int mod = 998244353;
const int maxn = 6e5 + 10;
int r[maxn], len;
LL ksm(LL x, LL y) {
LL re = 1LL;
while(y) {
if(y & 1) re = re * x % mod;
x = x * x % mod;
y >>= 1;
}
return re;
}
void FNTT(vector<int> &A, int flag) {
A.resize(len);
for(int i = 0; i < len; i++) if(i < r[i]) std::swap(A[i], A[r[i]]);
for(int l = 1; l < len; l <<= 1) {
int w0 = ksm(3, (mod - 1) / (l << 1));
for(int i = 0; i < len; i += (l << 1)) {
int w = 1, a0 = i, a1 = i + l;
for(int k = 0; k < l; k++, a0++, a1++, w = 1LL * w0 * w % mod) {
int tmp = 1LL * A[a1] * w % mod;
A[a1] = ((A[a0] - tmp) % mod + mod) % mod;
A[a0] = (A[a0] + tmp) % mod;
}
}
}
if(flag == -1) {
std::reverse(A.begin() + 1, A.end());
int inv = ksm(len, mod - 2);
for(int i = 0; i < len; i++) A[i] = 1LL * inv * A[i] % mod;
}
}
vector<int> operator * (vector<int> A, vector<int> B) {
int tot = A.size() + B.size() - 1;
for(len = 1; len <= tot; len <<= 1);
for(int i = 0; i < len; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
FNTT(A, 1), FNTT(B, 1);
vector<int> ans;
ans.resize(len);
for(int i = 0; i < len; i++) ans[i] = 1LL * A[i] * B[i] % mod;
FNTT(ans, -1);
ans.resize(tot);
return ans;
}
vector<int> operator - (const vector<int> &A, const vector<int> &B) {
vector<int> ans;
for(int i = 0; i < (int)std::min(A.size(), B.size()); i++) ans.push_back(A[i] - B[i]);
if(A.size() < B.size()) for(int i = A.size(); i < (int)B.size(); i++) ans.push_back(-B[i]);
if(A.size() > B.size()) for(int i = B.size(); i < (int)A.size(); i++) ans.push_back(A[i]);
return ans;
}
vector<int> operator + (const vector<int> &A, const vector<int> &B) {
vector<int> ans;
for(int i = 0; i < (int)std::min(A.size(), B.size()); i++) ans.push_back(A[i] + B[i]);
if(A.size() < B.size()) for(int i = A.size(); i < (int)B.size(); i++) ans.push_back(B[i]);
if(A.size() > B.size()) for(int i = B.size(); i < (int)A.size(); i++) ans.push_back(A[i]);
return ans;
}
vector<int> inv(const vector<int> &A) {
if(A.size() == 1) {
vector<int> ans;
ans.push_back(ksm(A[0], mod - 2));
return ans;
}
int n = A.size(), _ = (n + 1) >> 1;
vector<int> B = A, ans;
ans.push_back(2);
B.resize(_);
B = inv(B);
ans = B * (ans - A * B);
ans.resize(n);
return ans;
}
vector<int> getd(const vector<int> &A) {
vector<int> ans;
ans.resize(A.size() - 1);
for(int i = 1; i < (int)A.size(); i++) ans[i - 1] = 1LL * i * A[i] % mod;
return ans;
}
vector<int> geti(const vector<int> &A) {
vector<int> ans;
ans.resize(A.size() + 1);
for(int i = 1; i < (int)ans.size(); i++) ans[i] = 1LL * A[i - 1] * ksm(i, mod - 2) % mod;
return ans;
}
vector<int> getln(const vector<int> &A) {
vector<int> B = inv(A), C = getd(A);
B = geti(B * C);
return B;
}
vector<int> gete(const vector<int> &A) {
if(A.size() == 1) {
vector<int> ans;
ans.push_back(1);
return ans;
}
int n = A.size(), _ = (n + 1) >> 1;
vector<int> ans, B = A;
ans.push_back(1);
B.resize(_);
B = gete(B);
ans = B * (ans - getln(B) + A);
ans.resize(n);
return ans;
}
int main() {
int n = in();
vector<int> a;
for(int i = 1; i <= n; i++) a.push_back(in());
a.resize(a.size() * 2);
a = gete(a);
for(int i = 0; i < n; i++) printf("%d%c", a[i], i == n - 1? '
' : ' ');
return 0;
}