zoukankan      html  css  js  c++  java
  • P4721 【模板】分治 FFT

    (color{#0066ff}{ 题目描述 })

    给定长度为 (n-1) 的数组 (g[1],g[2],..,g[n-1]),求 (f[0],f[1],..,f[n-1]),其中

    (f[i]=sum_{j=1}^if[i-j]g[j])

    边界为 (f[0]=1) 。答案模 (998244353)

    (color{#0066ff}{输入格式})

    第一行一个正整数 (n)

    第二行共 (n-1) 个非负整数 (g[1],g[2],..,g[n-1]),用空格隔开。

    (color{#0066ff}{输出格式})

    一行共 (n) 个非负整数,表示 (f[0],f[1],..,f[n-1])(998244353) 的值。

    (color{#0066ff}{输入样例})

    4
    3 1 2
        
    10
    2 456 32 13524543 998244352 0 1231 634544 51
    

    (color{#0066ff}{输出样例})

    1 3 10 35
        
    1 2 460 1864 13738095 55389979 617768468 234028967 673827961 708520894
    

    (color{#0066ff}{数据范围与提示})

    (2≤n≤10^5)

    (0leq g[i]<998244353)

    (color{#0066ff}{题解})

    然而这题可以用多项式求逆过(雾

    显然可以看出(f*g=f-f_0)

    然后。。。(f=frac{1}{1-g})

    求个逆就没了。。

    #include<bits/stdc++.h>
    #define LL long long
    LL in() {
    	char ch; LL x = 0, f = 1;
    	while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
    	for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
    	return x * f;
    }
    const int maxn = 4e5 + 10;
    const int mod = 998244353;
    using std::vector;
    int n, len, r[maxn];
    LL ksm(LL x, LL y) {
    	LL re = 1LL;
    	while(y) {
    		if(y & 1) re = re * x % mod;
    		x = x * x % mod;
    		y >>= 1;
    	}
    	return re;
    }
    void FFT(vector<int> &A, int flag) {
    	A.resize(len);
    	for(int i = 0; i < len; i++) if(i < r[i]) std::swap(A[i], A[r[i]]);
    	for(int l = 1; l < len; l <<= 1) {
    		int w0 = ksm(3, (mod - 1) / (l << 1));
    		for(int i = 0; i < len; i += (l << 1)) {
    			int w = 1, a0 = i, a1 = i + l;
    			for(int k = 0; k < l; k++, a0++, a1++, w = 1LL * w0 * w % mod) {
    				int tmp = 1LL * w * A[a1] % mod;
    				A[a1] = ((A[a0] - tmp) % mod + mod) % mod;
    				A[a0] = (A[a0] + tmp) % mod;
    			}
    		}
    	}
    	if(!(~flag)) {
    		std::reverse(A.begin() + 1, A.end());
    		int inv = ksm(len, mod - 2);
    		for(int i = 0; i < len; i++) A[i] = 1LL * A[i] * inv % mod;
    	}
    }
    vector<int> operator * (vector<int> A, vector<int> B) {
    	int tot = A.size() + B.size() - 1;
    	for(len = 1; len <= tot; len <<= 1);
    	for(int i = 0; i < len; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) * (len >> 1));
    	FFT(A, 1), FFT(B, 1);
    	vector<int> ans;
    	for(int i = 0; i < len; i++) ans.push_back(1LL * A[i] * B[i] % mod);
    	FFT(ans, -1);
    	ans.resize(tot);
    	return ans;
    }
    vector<int> operator - (const vector<int> &A, const vector<int> &B) {
    	vector<int> ans;
    	for(int i = 0; i < (int)std::min(A.size(), B.size()); i++) ans.push_back(A[i] - B[i]);
    	for(int i = A.size(); i < (int)B.size(); i++) ans.push_back(-B[i]);
    	for(int i = B.size(); i < (int)A.size(); i++) ans.push_back(A[i]);
    	return ans;
    }
    vector<int> inv(const vector<int> &A) {
    	if(A.size() == 1) {
    		vector<int> ans;
    		ans.push_back(ksm(A[0], mod - 2));
    		return ans;
    	}
    	vector<int> ans, B = A;
    	int n = A.size(), _ = (n + 1) >> 1;
    	B.resize(_);
    	ans.push_back(2);
    	B = inv(B);
    	ans = B * (ans - A * B);
    	ans.resize(n);
    	return ans;
    }
    int main() {
    	int n = in();
    	vector<int> a;
    	a.push_back(1);
    	for(int i = 1; i < n; i++) a.push_back(mod - in());
    	a = inv(a);
    	for(int i = 0; i < n; i++) printf("%d%c", a[i], i == n - 1? '
    ' : ' ');
    	return 0;
    }
    
  • 相关阅读:
    吊打XXX
    [CQOI2011]动态逆序对
    陌上花开
    【BOI2007】摩基亚Mokia
    [SCOI2008]奖励关
    最小生成树
    打表
    【中学高级本】倒酒
    整数合并
    韩信点兵
  • 原文地址:https://www.cnblogs.com/olinr/p/10423604.html
Copyright © 2011-2022 走看看