zoukankan      html  css  js  c++  java
  • 【待补充】算法导论 笔记

    (一)插入排序

     

     

    时间复杂度:

    原址排序,只需要一个key,稳定排序算法

    插入排序是随机访问模型(random access machine->RAM)

    RAM常见指令:算数指令(加减乘除取余取模)、数据移动指令(装入、存储、复制)、控制指令(条件与无条件转移、子程序调用与返回)

    (二)归并排序:

    分解(divide):分解待排序的n个元素的序列成各具n/2个元素的两个子序列

    解决(conquer):使用归并排序递归地排序两个子序列

    合并(combine):合并两个已经排序的子序列 以产生已排序的答案

     

    时间复杂度:

    渐进记号(asymptotic)

    只有渐进上界用O(n),表示:所有在cn函数下方的函数集合

    (三)分治法

    求最大子数组(maximum subarray)

    找到2个规模尽量相等的子数组,即找到子数组中点位置即为mid。递归求解A[low..mid] A[mid+1..high]的最大子数组

     

    图(a)表示:最大子数组可能存在的3种位置

    (四)求解递归(recurrence

    1、  代入法(substitution)

     

    2、  递归树法

    3、  主方法

     

    (五)堆排序

    1、维护最大堆性质,时间复杂度:

     

    2、建堆

     

    3、  堆排序算法  不稳定

     

    (六)优先队列(priority queue)

    1、  返回s中具有最大键值的元素

     

    2、  去掉并返回s中的具有最大键字的元素

     

    3、  将元素x的关键字值增加到k,(假设k的值不小于x的原关键字值)

     

    (七)快速排序(分治思想)

    1、普通版

     

    原址排序,时间复杂度:

    2、随机版

     

    (八)线性时间排序

    比较排序——> 在排序的最终结果中,各元素的次序依赖于他们之间的比较。比较排序在最坏的情况下要经过Ω(nlgn)次比较。堆排序和归并排序都是渐进最优的比较排序方法。

    1、决策树模型

     

    2、计数排序(counting-sort)

     

    稳定;时间复杂度:

    计数排序被用于计数排序的子过程。

    3、基数排序(radix sort)

    非原址排序;一位数排序算法必须是稳定的;时间复杂度:

     

    4、  桶排序(bucket sort)

     

    (九)动态规划

    最优子结构(optimization solution)+重叠子问题(overlapping subproblem)

    动态规划的两种等价实现方法:

    (1)       带备忘的自顶向下(top-down with memoization)

    按递归形式编写,但过程中会保存每个子问题的结(通常列在一个数组或算了吧中)。当需要一个子问题的解时,先减产是否已经保存过此解。如果是,则直接返回保存的值,从而节省计算时间;否则按通常方式计算此子问题。

    (2)       自底向下(bottom-up method)

    将子问题按规模排序,由小到大求解。每个子问题都只用求解一次。

    1、  钢条切割

     

    (1)       自顶向下加入备忘

     

    (2)       自底向上

     

    重构解

     

    2、  矩阵链乘

     

    (1)       自底向上表格法

     

     构造最优解

     

    优化核心算法(加入递归):

     

    (2)       带备忘的自顶向下

     

    3、  无权最短路径:找到一条从u到v边数最少的路径。有最优子结构。

    4、  无权最长路径:无最优子结构。

    5、  最长公共子序列

     

    计算LCS长度(long-common-subsequence 子序列 & substring子串ß必须连续)

     构造LCS  

    6、  0-1背包

     

    I的值是---装了几个物品

    J的值是---现在背包的容量

    存的元素---现在的价值

    令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数:

    (1)   V(i,0)=V(0,j)=0 

    (2)           V(i-1,j)                        j<wi

     V(i,j)=

           max{V(i-1,j) ,V(i-1,j-wi)+vi) }   j>wi

    (1)式表明:如果第i个物品的重量大于背包的容量,则装入前i个物品得到的最大价值和装入前i-1个物品得到的最大价是相同的,即物品i不能装入背包;

     

    (2)式表明:如果第i个物品的重量小于背包的容量,则会有一下两种情况:

    (a)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。

    (b)如果把第i个物品装入背包,则背包物品的价值等于第i-1个物品装入容量位j-wi 的背包中的价值加上第i个物品的价值vi; 

    显然,取二者中价值最大的作为把前i个物品装入容量为j的背包中的最优解。

     

    打印出当前的v数组和被选中物品的x数组。

    7、  求最大子段和

     B数组记录了以当前元素为结尾时,最大字段的和,用第一个循环完成。

    第二个循环,打印B数组。

    第三个循环,遍历B数组,找到最大值。

    (十)贪心算法

    最优子结构+贪心性选择

    1、  活动选择问题

    2、  部分背包

    (1)构造并输出二维数组b数组。第一行:单位重量的价值增序;第二行:对应的重量;第三行:对应的价值。(2)构造并输出x数组贪心性选择是单位重量的价值最大的。(3)根据b和x数组计算最大价值s并输出。

    3、  赫夫曼编码

    每个步骤合并频率最低的两颗树

    (十一)单结点对

    1、  bellman-ford

     

    Bellman-ford算法在求解过程中,每次循环每个顶点的dist[]值都有可能要修改,也就是说源点到各顶点最短路径长度一直要到Bellman-ford算法结束才确定下来。

    2、  dijkstra(贪心算法)

    贪心性选择:选择集合V-S中“最轻”或“最近”的结点来加入集合S中。每次选择结点u来加入到集合S中时,有

    Dijkstra在求解过程中,源点到集合S内各顶点的最短路径一旦求出,则不变化了,修改的仅仅是从源点到T集合中个顶点的最短路径长度。

    (十二)所有结点对

    1、  最短路径和矩阵乘法(动态规划)

      

    自底向上

     

    改进

     

    2、  Floyd-warshall(动态规划)

     

     

    3、  Johnson(给予稀疏矩阵)

     

    (十三)回溯法

    问题状态(problem state)解决问题时,树中的一个节点定义了一个问题状态

    状态空间(state space)所有从根到结点的路径(蛮力法)

    解状态(solution state)满足显式约束

    答案状态(answer state)同时满足隐式约束

    状态空间树     E-node(扩展结点)可以继续生成孩子结点的结点

                                Alive-node(活结点)被DFS,此结点在等待生成结点

                                Dead-node(死结点)不能生成孩子结点的结点

    限界函数bound-function:不生成全部problem state—》杀死一部分活结点

    1、8-Queen

    2、给定n+1个整型,找子集使和为M  (DFS)

    3、0-1背包

    对一组数据,有两种可能:选或不选,在树种用左右字数表示。

    使用递归,在遍历完n个数时,判断最终的数是否比最佳价值大,如比最佳大,则把值付给besrv。

    上界函数:当前的价值cw+剩余可容纳的最大价值<=当前最优解

     

    (十四)分支限界

    15-Puzzle (BFS)

    定理:是偶数,则可达。

    ĉ(X)=f(X)+ĝ(X)代价估计函数。

    f(X) is the length of  the path from the root to X

    ĝ(X) is the minimum number of movings from X to the target state.

    ĝ(X)=the number of blocks which are not in its target position (except the blank space)

    (十五)NP问题,

    Computability

         Undecidable Problem

             Hilbert’s 10th Problem.

             Post’s Correspondence Problem.

             Halting Problem.

         NP-Complete

             P, EXP, NP, NP-Complete

             SAT is the first NP-Complete problem

             Other NP-Complete problems: 3-color, TSP, CIRCUIT-SAT

  • 相关阅读:
    Python使用QRCode模块生成二维码
    C++ STL中允许重复key的multimap
    C++ STL中Map的按Value排序
    C++ STL中Map的按Key排序
    C++ String和其他类型互换
    android studio
    加快android studio 编译速度(已更新至Android Studio 3.3.1)
    解决Installation failed with message Failed to finalize session : INSTALL_FAILED_INVALID_APK的问题
    Android 自定义Dialog 去除阴影
    FFmpeg(14)-使用NDK、C++完成EGL,display, surface, context的配置和初始化
  • 原文地址:https://www.cnblogs.com/olivegyr/p/7017607.html
Copyright © 2011-2022 走看看