定义:
网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常的称为网页追逐者),是一种按照一定的规则,自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字还有蚂蚁、自动索引、模拟程序或者蠕虫。
*************************************************************************
Requests
Requests 是使用 Apache2 Licensed 许可证的 基于Python开发的HTTP 库,其在Python内置模块的基础上进行了高度的封装,从而使得Pythoner进行网络请求时,变得美好了许多,使用Requests可以轻而易举的完成浏览器可有的任何操作。
1、GET请求
# 1、无参数实例 import requests ret = requests.get('https://github.com/timeline.json') print ret.url print ret.text
# 2、有参数实例 import requests payload = {'key1': 'value1', 'key2': 'value2'} ret = requests.get("http://httpbin.org/get", params=payload) print ret.url print ret.text
向 https://github.com/timeline.json 发送一个GET请求,将请求和响应相关均封装在 ret 对象中。
2、POST请求
# 1、基本POST实例 import requests payload = {'key1': 'value1', 'key2': 'value2'} ret = requests.post("http://httpbin.org/post", data=payload) print ret.text
# 2、发送请求头和数据实例 import requests import json url = 'https://api.github.com/some/endpoint' payload = {'some': 'data'} headers = {'content-type': 'application/json'} ret = requests.post(url, data=json.dumps(payload), headers=headers) print ret.text print ret.cookies
向https://api.github.com/some/endpoint发送一个POST请求,将请求和相应相关的内容封装在 ret 对象中。
3、其他请求
requests.get(url, params=None, **kwargs) requests.post(url, data=None, json=None, **kwargs) requests.put(url, data=None, **kwargs) requests.head(url, **kwargs) requests.delete(url, **kwargs) requests.patch(url, data=None, **kwargs) requests.options(url, **kwargs) # 以上方法均是在此方法的基础上构建 requests.request(method, url, **kwargs)
def request(method, url, **kwargs): """Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json data to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': ('filename', fileobj)}``) for multipart encoding upload. :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a :ref:`(connect timeout, read timeout) <timeouts>` tuple. :type timeout: float or tuple :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy. :param verify: (optional) whether the SSL cert will be verified. A CA_BUNDLE path can also be provided. Defaults to ``True``. :param stream: (optional) if ``False``, the response content will be immediately downloaded. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :return: :class:`Response <Response>` object :rtype: requests.Response Usage:: >>> import requests >>> req = requests.request('GET', 'http://httpbin.org/get') <Response [200]> """ # By using the 'with' statement we are sure the session is closed, thus we # avoid leaving sockets open which can trigger a ResourceWarning in some # cases, and look like a memory leak in others. with sessions.Session() as session: return session.request(method=method, url=url, **kwargs) 更多参数
更多requests模块相关的文档见:http://cn.python-requests.org/zh_CN/latest/
====================实例
爬取汽车之家 新闻(无需登录)
import requests from bs4 import BeautifulSoup response=requests.get('http://www.autohome.com.cn/news/') response.encoding='gbk' # html.parser soup=BeautifulSoup(response.text,'html.parser') div_all=soup.find('div',attrs={'id':'auto-channel-lazyload-article'}) li_l=div_all.find_all('li') p = 0 for li in li_l: li_a=li.find('a') li_h=li.find('h3') p+=1 if li_a: print('aaaaaaaaaaaaaaa',li_a.get('href').strip('//')) else: print('aaaaaaaaaaaaaa') if li_h: print('hhhhhhhhhhhhhhhh',li_h.text) else: print('hhhhhhhhhhhhhhhh') print('---------------->') if p>=5: break
抽屉,不登录 拿 热点文章 标题,URL
登录 为某个文章点赞
import requests from bs4 import BeautifulSoup #抽屉 content-list http://dig.chouti.com/ response=requests.get('http://dig.chouti.com/') r1_dic=response.cookies.get_dict() r2=requests.post( 'http://dig.chouti.com/login', data={ 'phone':'86123123', 'password':'aaaa', 'oneMonth':1 }, cookies=r1_dic) r2_dic=r2.cookies.get_dict() all_dic={} all_dic.update(r1_dic) all_dic.update(r2_dic) #登录并点赞 r3=requests.post('http://dig.chouti.com/link/vote?linksId=14720226',cookies=all_dic) print(r3.text) #拿 url 和标题 soup=BeautifulSoup(response.text,'html.parser') div_all=soup.find('div',attrs={'id':'content-list'}) div_li=div_all.find_all('div',attrs={'class':'news-content'}) p=0 for div in div_li: p+=1 div_a=div.find('a') if div_a: url=div_a.get('href') str=div_a.text.strip() print('url-------->',url) print('str-------->',str) print('----------===============') if p>=5: break
def param_method_url(): # requests.request(method='get', url='http://127.0.0.1:8000/test/') # requests.request(method='post', url='http://127.0.0.1:8000/test/') pass def param_param(): # - 可以是字典 # - 可以是字符串 # - 可以是字节(ascii编码以内) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params="k1=v1&k2=水电费&k3=v3&k3=vv3") # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=k2&k3=v3&k3=vv3", encoding='utf8')) # 错误 # requests.request(method='get', # url='http://127.0.0.1:8000/test/', # params=bytes("k1=v1&k2=水电费&k3=v3&k3=vv3", encoding='utf8')) pass def param_data(): # 可以是字典 # 可以是字符串 # 可以是字节 # 可以是文件对象 # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data={'k1': 'v1', 'k2': '水电费'}) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1; k2=v2; k3=v3; k3=v4" # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data="k1=v1;k2=v2;k3=v3;k3=v4", # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # data=open('data_file.py', mode='r', encoding='utf-8'), # 文件内容是:k1=v1;k2=v2;k3=v3;k3=v4 # headers={'Content-Type': 'application/x-www-form-urlencoded'} # ) pass def param_json(): # 将json中对应的数据进行序列化成一个字符串,json.dumps(...) # 然后发送到服务器端的body中,并且Content-Type是 {'Content-Type': 'application/json'} requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}) def param_headers(): # 发送请求头到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', json={'k1': 'v1', 'k2': '水电费'}, headers={'Content-Type': 'application/x-www-form-urlencoded'} ) def param_cookies(): # 发送Cookie到服务器端 requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies={'cook1': 'value1'}, ) # 也可以使用CookieJar(字典形式就是在此基础上封装) from http.cookiejar import CookieJar from http.cookiejar import Cookie obj = CookieJar() obj.set_cookie(Cookie(version=0, name='c1', value='v1', port=None, domain='', path='/', secure=False, expires=None, discard=True, comment=None, comment_url=None, rest={'HttpOnly': None}, rfc2109=False, port_specified=False, domain_specified=False, domain_initial_dot=False, path_specified=False) ) requests.request(method='POST', url='http://127.0.0.1:8000/test/', data={'k1': 'v1', 'k2': 'v2'}, cookies=obj) def param_files(): # 发送文件 # file_dict = { # 'f1': open('readme', 'rb') # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', open('readme', 'rb')) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf") # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) # 发送文件,定制文件名 # file_dict = { # 'f1': ('test.txt', "hahsfaksfa9kasdjflaksdjf", 'application/text', {'k1': '0'}) # } # requests.request(method='POST', # url='http://127.0.0.1:8000/test/', # files=file_dict) pass def param_auth(): from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf')) print(ret.text) # ret = requests.get('http://192.168.1.1', # auth=HTTPBasicAuth('admin', 'admin')) # ret.encoding = 'gbk' # print(ret.text) # ret = requests.get('http://httpbin.org/digest-auth/auth/user/pass', auth=HTTPDigestAuth('user', 'pass')) # print(ret) # def param_timeout(): # ret = requests.get('http://google.com/', timeout=1) # print(ret) # ret = requests.get('http://google.com/', timeout=(5, 1)) # print(ret) pass def param_allow_redirects(): ret = requests.get('http://127.0.0.1:8000/test/', allow_redirects=False) print(ret.text) def param_proxies(): # proxies = { # "http": "61.172.249.96:80", # "https": "http://61.185.219.126:3128", # } # proxies = {'http://10.20.1.128': 'http://10.10.1.10:5323'} # ret = requests.get("http://www.proxy360.cn/Proxy", proxies=proxies) # print(ret.headers) # from requests.auth import HTTPProxyAuth # # proxyDict = { # 'http': '77.75.105.165', # 'https': '77.75.105.165' # } # auth = HTTPProxyAuth('username', 'mypassword') # # r = requests.get("http://www.google.com", proxies=proxyDict, auth=auth) # print(r.text) pass def param_stream(): ret = requests.get('http://127.0.0.1:8000/test/', stream=True) print(ret.content) ret.close() # from contextlib import closing # with closing(requests.get('http://httpbin.org/get', stream=True)) as r: # # 在此处理响应。 # for i in r.iter_content(): # print(i) def requests_session(): import requests session = requests.Session() ### 1、首先登陆任何页面,获取cookie i1 = session.get(url="http://dig.chouti.com/help/service") ### 2、用户登陆,携带上一次的cookie,后台对cookie中的 gpsd 进行授权 i2 = session.post( url="http://dig.chouti.com/login", data={ 'phone': "8615131255089", 'password': "xxxxxx", 'oneMonth': "" } ) i3 = session.post( url="http://dig.chouti.com/link/vote?linksId=8589623", ) print(i3.text)
requests的所有参数(get,post)
"""
1. method 类型,方法
2. url 地址
3. params get,传参数
4. data post,传参数
5. json post,传参数2
6. headers 头信息
7. cookies 客户端cookies
8. files 上传文件
9. auth 验证
10. timeout 超时时间
11. allow_redirects
12. proxies
13. stream
14. cert
================ session,保存请求相关信息(不推荐)===================
# 8. files,文件上传 requests.post(url='xx',files=()) # 9. auth,用户认证 from requests.auth import HTTPBasicAuth, HTTPDigestAuth ret = requests.get('https://api.github.com/user', auth=HTTPBasicAuth('wupeiqi', 'sdfasdfasdf')) print(ret.text) from contextlib import closing with closing(requests.get('http://httpbin.org/get', stream=True)) as r: # 在此处理响应。 for i in r.iter_content(): print(i)
BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单。
安装:pip3 install beautifulsoup4
from bs4
import
BeautifulSoup
from bs4 import BeautifulSoup html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> asdf <div class="title"> <b>The Dormouse's story总共</b> <h1>f</h1> </div> <div class="story">Once upon a time there were three little sisters; and their names were <a class="sister0" id="link1">Els<span>f</span>ie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</div> ad<br/>sf <p class="story">...</p> </body> </html> """
soup = BeautifulSoup(html_doc, 'html.parser') # 找到第一个a标签 tag1 = soup.find(name='a') # 找到所有的a标签 tag2 = soup.find_all(name='a') # 找到id=link2的标签 tag3 = soup.select('#link2')
1. name,标签名称
# tag = soup.find('a') # name = tag.name # 获取 # print(name) # tag.name = 'span' # 设置 # print(soup)
2. attrs,标签属性
# tag = soup.find('a') # attrs = tag.attrs # 获取 # print(attrs) # tag.attrs = {'ik':123} # 设置 # tag.attrs['id'] = 'iiiii' # 设置 # print(soup)
3. children,所有子标签
# body = soup.find('body') # v = body.children
4. children,所有子子孙孙标签
# body = soup.find('body') # v = body.descendants
5. clear,将标签的所有子标签全部清空(保留标签名)
# tag = soup.find('body') # tag.clear() # print(soup)
6. decompose,递归的删除所有的标签
# body = soup.find('body') # body.decompose() # print(soup)
7. extract,递归的删除所有的标签,并获取删除的标签
# body = soup.find('body') # v = body.extract() # print(soup)
8. decode,转换为字符串(含当前标签);decode_contents(不含当前标签)
# body = soup.find('body') # v = body.decode() # v = body.decode_contents() # print(v)
9. encode,转换为字节(含当前标签);encode_contents(不含当前标签)
# body = soup.find('body') # v = body.encode() # v = body.encode_contents() # print(v)
10. find,获取匹配的第一个标签
# tag = soup.find('a') # print(tag) # tag = soup.find(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # tag = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tag)
11. find_all,获取匹配的所有标签
# tags = soup.find_all('a') # print(tags) # tags = soup.find_all('a',limit=1) # print(tags) # tags = soup.find_all(name='a', attrs={'class': 'sister'}, recursive=True, text='Lacie') # # tags = soup.find(name='a', class_='sister', recursive=True, text='Lacie') # print(tags) # ####### 列表 ####### # v = soup.find_all(name=['a','div']) # print(v) # v = soup.find_all(class_=['sister0', 'sister']) # print(v) # v = soup.find_all(text=['Tillie']) # print(v, type(v[0])) # v = soup.find_all(id=['link1','link2']) # print(v) # v = soup.find_all(href=['link1','link2']) # print(v) # ####### 正则 ####### import re # rep = re.compile('p') # rep = re.compile('^p') # v = soup.find_all(name=rep) # print(v) # rep = re.compile('sister.*') # v = soup.find_all(class_=rep) # print(v) # rep = re.compile('http://www.oldboy.com/static/.*') # v = soup.find_all(href=rep) # print(v) # ####### 方法筛选 ####### # def func(tag): # return tag.has_attr('class') and tag.has_attr('id') # v = soup.find_all(name=func) # print(v) # ## get,获取标签属性 # tag = soup.find('a') # v = tag.get('id') # print(v)
12. has_attr,检查标签是否具有该属性
# tag = soup.find('a') # v = tag.has_attr('id') # print(v)
13. get_text,获取标签内部文本内容
# tag = soup.find('a') # v = tag.get_text('id') # print(v)
14. index,检查标签在某标签中的索引位置
# tag = soup.find('body') # v = tag.index(tag.find('div')) # print(v) # tag = soup.find('body') # for i,v in enumerate(tag): # print(i,v)
15. is_empty_element,是否是空标签(是否可以是空)或者自闭合标签,
判断是否是如下标签:'br' , 'hr', 'input', 'img', 'meta','spacer', 'link', 'frame', 'base'
# tag = soup.find('br') # v = tag.is_empty_element # print(v)
16. 当前的关联标签
# soup.next # soup.next_element # soup.next_elements # soup.next_sibling # soup.next_siblings # # tag.previous # tag.previous_element # tag.previous_elements # tag.previous_sibling # tag.previous_siblings # # tag.parent # tag.parents
17. 查找某标签的关联标签
# tag.find_next(...) # tag.find_all_next(...) # tag.find_next_sibling(...) # tag.find_next_siblings(...) # tag.find_previous(...) # tag.find_all_previous(...) # tag.find_previous_sibling(...) # tag.find_previous_siblings(...) # tag.find_parent(...) # tag.find_parents(...) # 参数同find_all
18. select,select_one, CSS选择器
soup.select("title") soup.select("p nth-of-type(3)") soup.select("body a") soup.select("html head title") tag = soup.select("span,a") soup.select("head > title") soup.select("p > a") soup.select("p > a:nth-of-type(2)") soup.select("p > #link1") soup.select("body > a") soup.select("#link1 ~ .sister") soup.select("#link1 + .sister") soup.select(".sister") soup.select("[class~=sister]") soup.select("#link1") soup.select("a#link2") soup.select('a[href]') soup.select('a[href="http://example.com/elsie"]') soup.select('a[href^="http://example.com/"]') soup.select('a[href$="tillie"]') soup.select('a[href*=".com/el"]') from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator) print(type(tags), tags) from bs4.element import Tag def default_candidate_generator(tag): for child in tag.descendants: if not isinstance(child, Tag): continue if not child.has_attr('href'): continue yield child tags = soup.find('body').select("a", _candidate_generator=default_candidate_generator, limit=1) print(type(tags), tags)
19. 标签的内容
# tag = soup.find('span') # print(tag.string) # 获取 # tag.string = 'new content' # 设置 # print(soup) # tag = soup.find('body') # print(tag.string) # tag.string = 'xxx' # print(soup) # tag = soup.find('body') # v = tag.stripped_strings # 递归内部获取所有标签的文本 # print(v)
20.append在当前标签内部追加一个标签
# tag = soup.find('body') # tag.append(soup.find('a')) # print(soup) # # from bs4.element import Tag # obj = Tag(name='i',attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.append(obj) # print(soup)
21.insert在当前标签内部指定位置插入一个标签
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # tag.insert(2, obj) # print(soup)
22. insert_after,insert_before 在当前标签后面或前面插入
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('body') # # tag.insert_before(obj) # tag.insert_after(obj) # print(soup)
23. replace_with 在当前标签替换为指定标签
# from bs4.element import Tag # obj = Tag(name='i', attrs={'id': 'it'}) # obj.string = '我是一个新来的' # tag = soup.find('div') # tag.replace_with(obj) # print(soup)
24. 创建标签之间的关系
# tag = soup.find('div') # a = soup.find('a') # tag.setup(previous_sibling=a) # print(tag.previous_sibling)
25. wrap,将指定标签把当前标签包裹起来
# from bs4.element import Tag # obj1 = Tag(name='div', attrs={'id': 'it'}) # obj1.string = '我是一个新来的' # # tag = soup.find('a') # v = tag.wrap(obj1) # print(soup) # tag = soup.find('a') # v = tag.wrap(soup.find('p')) # print(soup)
26. unwrap,去掉当前标签,将保留其包裹的标签
# tag = soup.find('a') # v = tag.unwrap() # print(soup)