题目:
每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0...m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!^_^)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
很经典的约瑟夫环问题。
一个很自然的想法是建立循环链表,利用链表模拟游戏过程:
方案一(链表):
class Solution {
struct CircNode{
int val;
struct CircNode* next;
CircNode(int x):val(x),next(NULL){};
};
public:
int Joseph(CircNode* head, int m)
{
CircNode* pre = NULL;
while (head->next != head)
{
for (int i = 0; i < m - 1; i++)
{
pre = head;
head = head->next;
}
pre->next= head->next;
delete head;
head = pre->next;
}
return head->val;
}
int LastRemaining_Solution(int n, int m)
{
if(n<=0) return -1;
CircNode* head = new CircNode(0), *p = head;
head->next = head;
for (int i = 1; i<n; i++)
{
CircNode* temp = new CircNode(i);
p->next = temp;
temp->next = head;
p = p->next;
}
return Joseph( head,m);
}
};
也可以直接利用C++STL中的顺序容器list,注意list中封装的是双向链表,且其支持的迭代子为双向迭代子,迭代子仅能进行++、--操作。
class Solution {
public:
int LastRemaining_Solution(int n, int m)//n为人数
{
if(n<1||m<1)
return -1;
list<int> numbers;
for(int i=0;i<n;i++)
numbers.push_back(i);
list<int>::iterator current=numbers.begin();
while(numbers.size()>1)
{
for(int i=1;i<m;i++)//走m-1步到达第m个数处
{
++current;
if(current==numbers.end())
current=numbers.begin();
}
list<int>::iterator next=++current;
if(next==numbers.end())
next=numbers.begin();
numbers.erase(--current);
current=next;
}
return *current;//对迭代器取值,等价于对指针取值
}
};
方案二(数组):
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if (n <= 0) return -1;
if (n == 1) return 0;
int* Joseph = new int[n];
for (int i = 0; i<n; i++)
Joseph[i] = i;
int index = 0;
for (int i = 0; i<n - 1; i++)
{
int count = m - 1;
while (count)
{
index = (index + 1) % n;
if (Joseph[index] == -1) continue;
count--;
}
Joseph[index] = -1;
while (Joseph[index] == -1) index = (index + 1) % n;
}
return Joseph[index];
}
};
方案三:
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if(n<=0) return -1;
return n==1? 0:(LastRemaining_Solution(n-1,m)+m)%n;
}
};
方案四:
该方案作为方案三尾递归的循环形式
class Solution {
public:
int LastRemaining_Solution(int n, int m)
{
if(n<=0) return -1;
if(n==1) return 0;
int res=0;
for(int i=2;i<=n;i++)
{
res=(res+m)%i;
}
return res;
}
};
参考:https://www.nowcoder.com/questionTerminal/f78a359491e64a50bce2d89cff857eb6
https://www.nowcoder.com/questionTerminal/11b018d042444d4d9ca4914c7b84a968