zoukankan      html  css  js  c++  java
  • 正交投影矩阵-原理及推导

    来自:https://blog.csdn.net/tengweitw/article/details/41174555

    二维投影

    上图表示的是,向量b在向量a上的投影。显然有例如以下表达式:

    当中,P为投影矩阵,由P的表达式能够看出,它具有例如以下性质:


    三维投影

           三维投影,就是将一个向量投影到一个平面上。同上面一样,如果是将b向量投影到平面上的p向量,则有表达式:

    e是垂直与平面的向量。

    因为p向量在平面上。则p向量能够由该平面的2个线性无关向量(正如。在xy平面的不论什么向量都能够由x轴,y轴表示)表示:

    因为e垂直平面,则e向量垂直与平面中的随意向量。则有:

    将上式化简求得x:

    又由于p=Ax,Pb=p,则得到投影矩阵为:

    由P的表达式能够看出,它具有例如以下性质:

    上面的投影矩阵是通式。当投影在一维情况时,数值的逆是它的倒数,A即为直线上的随意一个向量a,投影矩阵为:


    实例说明:

    如上图,如果我们要将向量b投影到水平面上。其投影为p,a1,a2为水平面的两个线性无关向量,它们的參数分别为:

    那么A=[a1 a2]即:

    由上面我们求得的通式,可得投影矩阵P:

    知道投影矩阵P后。我们能够得到b在水平面上的投影p为:

    显然,p与我们图中所看到的的结果同样。这里我们是以三维情况进行举例的,更高维情况。我们无法用图像来描写叙述,可是通式也是成立的。

  • 相关阅读:
    广域网详解
    无线AP和无线路由器区别
    TRUNK的作用功能.什么是TRUNK
    name after, name for, name as
    让你的情商爆棚吧!
    综合布线系统之7个子系统构成
    网桥和交换机的工作原理及区别
    边界网关协议BGP
    OSPF协议详解
    路由信息协议(RIP)的防环机制
  • 原文地址:https://www.cnblogs.com/onenoteone/p/12441762.html
Copyright © 2011-2022 走看看