zoukankan      html  css  js  c++  java
  • ZOJ2317-Nice Patterns Strike Back:矩阵快速幂,高精度

    Nice Patterns Strike Back

    Time Limit: 20000/10000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others)

    Problem Description

          You might have noticed that there is the new fashion among rich people to have their yards tiled with black and white tiles, forming a pattern. The company Broken Tiles is well known as the best tiling company in our region. It provides the widest choices of nice patterns to tile your yard with. The pattern is nice if there is no square of size 2 × 2, such that all tiles in it have the same color. So patterns on the figure 1 are nice, while patterns on the figure 2 are not.

          The president of the company wonders whether the variety of nice patterns he can provide to the clients is large enough. Thus he asks you to find out the number of nice patterns that can be used to tile the yard of size N × M . Now he is interested in the long term estimation, so he suggests N ≤ 10100However, he does not like big numbers, so he asks you to find the answer modulo P .

    Input

          The input file contains three integer numbers: N (1 ≤ N ≤ 10100), M (1 ≤ M ≤ 5) and P (1 ≤ P ≤10000).

    Output

          Write the number of nice patterns of size N × M modulo P to the output file.

    Sample Input

    2 2 5
    3 3 23

    Sample Output

    4
    0
    

    Source

    Andrew Stankevich Contest 1
     
     
    算法:因为m<=5,每一行的状态可以用一个二进制数表示,构造系数矩阵A,其中aij为1表示状态i和j不冲突,为0表示冲突,结果为A^(n-1)中矩阵各元素之和,由于n很大,所以涉及到高精度和矩阵快速幂,所以我用Java写了。
     
     
     
      1 import java.awt.Checkbox;
      2 import java.io.BufferedInputStream;
      3 import java.io.BufferedOutputStream;
      4 import java.io.PrintWriter;
      5 import java.math.BigInteger;
      6 import java.util.Scanner;
      7 
      8 public class Main {
      9 
     10     static int p;
     11 
     12     public static class Matrix implements Cloneable {
     13         long[][] a;
     14         int d;
     15 
     16         public Matrix(int d) {
     17             this.d = d;
     18             a = new long[d][d];
     19         }
     20 
     21         public Matrix multiply(Matrix m) {
     22             Matrix ret = new Matrix(d);
     23             for (int i = 0; i < d; ++i) {
     24                 for (int j = 0; j < d; ++j) {
     25                     for (int k = 0; k < d; ++k) {
     26                         ret.a[i][j] += a[i][k] * m.a[k][j];
     27                         ret.a[i][j] %= p;
     28                     }
     29                 }
     30             }
     31             return ret;
     32         }
     33 
     34         public Matrix clone() {
     35             Matrix ret = new Matrix(d);
     36             ret.a = a.clone();
     37             return ret;
     38         }
     39 
     40         Matrix pow(BigInteger cnt) {
     41             // 先生成一个单位矩阵
     42             Matrix eye = new Matrix(d);
     43             for (int i = 0; i < d; i++)
     44                 eye.a[i][i] = 1;
     45 
     46             for (int i = cnt.bitLength() - 1; i >= 0; i--) {
     47                 eye = eye.multiply(eye);
     48                 if (cnt.testBit(i)) {
     49                     eye = eye.multiply(this);
     50                 }
     51             }
     52             return eye;
     53         }
     54     }
     55 
     56     static boolean check(int x, int y, int m) {
     57         for (int i = 1; i < m; i++) {
     58             if ((x & 3) == (y & 3) && (x & 1) == ((x & 2) >> 1)) {
     59                 return false;
     60             }
     61             x >>= 1;
     62             y >>= 1;
     63         }
     64 
     65         return true;
     66     }
     67 
     68     public static void main(String[] args) {
     69 
     70         Scanner cin = new Scanner(new BufferedInputStream(System.in));
     71         PrintWriter cout = new PrintWriter(new BufferedOutputStream(System.out));
     72 
     73         int T = cin.nextInt();
     74 
     75         while (T-- != 0) {
     76             BigInteger n = cin.nextBigInteger();
     77             int m = cin.nextInt();
     78             p = cin.nextInt();
     79 
     80             // 生成矩阵A
     81             int d = (1 << m);
     82             Matrix A = new Matrix(d);
     83             for (int i = 0; i < d; i++)
     84                 for (int j = 0; j < d; j++) {
     85                     if (check(i, j, m))
     86                         A.a[i][j] = 1;
     87                 }
     88 
     89             A = A.pow(n.subtract(BigInteger.ONE));
     90 
     91             long ans = 0;
     92             for (int i = 0; i < d; i++)
     93                 for (int j = 0; j < d; j++) {
     94                     ans = (ans + A.a[i][j]) % p;
     95                 }
     96 
     97             cout.println(ans);
     98             if (T != 0)
     99                 cout.println("");
    100             // System.out.println(ans);
    101         }
    102 
    103         cin.close();
    104         cout.close();
    105 
    106     }
    107 }
  • 相关阅读:
    改不改,这是一个问题
    连载:面向对象的葵花宝典:思考、技巧与实践(39)
    Oracle压缩总结2— 估计表压缩效应
    CSDN markdown 编辑 第五章 UML
    Arcgis for Javascript之featureLayer图和属性互操作性
    bzoj 2437 [Noi2011]兔子和鸡蛋 [二分图匹配]
    “jquery于each方法和选择”学习笔记
    安卓模拟器错误: Could not open
    软路试--就像一棵树活着
    2014第21周二
  • 原文地址:https://www.cnblogs.com/oneshot/p/4004406.html
Copyright © 2011-2022 走看看