Trie求最大XOR
设w[x]表示从跟节点到x的路径上所有权值的xor,显然有:
w[x] = w[fa] xor weight(x, fa)
所以我们可以先dfs一次树,把所有点的w都预处理出来。。
根据xor的性质可知,x xor x = 0,所以问题就变成了求w[x] xor w[y]的最大值(因为相同路径都抵消了)
所以我们把w值用trie维护即可
#include <iostream>
#include <cstring>
#include <cstdio>
// 为啥不能用万能头呢poj。。。
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C yql){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % yql)if(p & 1)ans = 1LL * x * ans % yql;
return ans;
}
const int N = 100005;
int trie[6000000][2], tot, cnt, head[N], w[N];
struct Edge{
int v, next, w;
}edge[N<<2];
void addEdge(int a, int b, int w){
edge[cnt].v = b;
edge[cnt].w = w;
edge[cnt].next = head[a];
head[a] = cnt ++;
}
void dfs(int s, int fa){
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u != fa){
w[u] = w[s]^edge[i].w;
dfs(u, s);
}
}
}
void insert(int num){
int cur = 1;
for(int i = 31; i >= 0; i --){
int p = (num >> i) & 1;
if(trie[cur][p] == 0) trie[cur][p] = ++tot;
cur = trie[cur][p];
}
}
int search(int num){
int cur = 1, ret = 0;
for(int i = 31; i >= 0; i --){
int p = (num >> i) & 1;
if(trie[cur][p^1] == 0) cur = trie[cur][p];
else ret += (1 << i), cur = trie[cur][p^1];
}
return ret;
}
int main(){
int n;
while(scanf("%d", &n) != EOF){
cnt = 0;
memset(head, -1, sizeof head);
memset(trie, 0, sizeof trie);
memset(w, 0, sizeof w);
for(int i = 0; i < n - 1; i++){
int a = read(), b = read(), c = read();
addEdge(a, b, c), addEdge(b, a, c);
}
dfs(0, 0);
int ans = 0;
tot = 1;
for(int i = 0; i < n; i++){
insert(w[i]);
ans = max(ans, search(w[i]));
}
printf("%d
", ans);
}
return 0;
}