zoukankan      html  css  js  c++  java
  • BZOJ 1001 狼抓兔子

    对偶图

    这是一道非常玄学的题目。。
    有两种方法。。因为题面特别裸,一看就是最小割,再一看数据,心凉了一半,不过我也去试了下//
    dinic是可以在洛谷上不开O2过的,但是在BZOJ上过不了。。然后我去学了下对偶图的概念。
    平面图有一个性质: 最平面图大流=最小割=对应的对偶图的最短路径。
    然后就开始了令人绝望的建图过程。。。。
    大概就是把平面图的任意对角做延长线,将平面分成两部分,一部分当成起点,一部分当成终点。
    对于原图的每一条边,都会分割两个区域,我们把这两个区域看成点,原图的边权看成两个区域之间的边权。
    这样就建成了对偶图。。说起来很简单,但是这道题的建图。。。。(毒瘤)
    我死啃了3个小时对着题解把图建完,去洛谷一交,发现TLE。。。我差点把电脑摔了,还好BZOJ过了。。

    先是dinic的代码

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 100005;
    int n, m, cnt, s, t, head[N<<4], depth[N<<4];
    struct { int v, next, f; } edge[N<<10];
    
    inline int hashpos(int x, int y){
        return (x - 1) * m + y;
    }
    
    inline void addEdge(int a, int b, int f){
        edge[cnt].v = b, edge[cnt].f = f, edge[cnt].next = head[a], head[a] = cnt ++;
        edge[cnt].v = a, edge[cnt].f = f, edge[cnt].next = head[b], head[b] = cnt ++;
    }
    
    inline bool bfs(){
        full(depth, 0);
        queue<int> q;
        q.push(s), depth[s] = 1;
        while(!q.empty()){
            int cur = q.front(); q.pop();
            for(int i = head[cur]; i != -1; i = edge[i].next){
                int u = edge[i].v;
                if(!depth[u] && edge[i].f > 0){
                    depth[u] = depth[cur] + 1;
                    q.push(u);
                }
            }
        }
        return depth[t] != 0;
    }
    
    inline int dfs(int cur, int a){
        if(cur == t) return a;
        int flow = 0;
        for(int i = head[cur]; i != -1; i = edge[i].next){
            int u = edge[i].v;
            if(depth[u] == depth[cur] + 1 && edge[i].f > 0){
                int k = dfs(u, min(edge[i].f, a));
                if(k > 0) a -= k, flow += k, edge[i].f -= k, edge[i^1].f += k;
            }
            if(!a) break;
        }
        if(a) depth[cur] = -1;
        return flow;
    }
    
    inline int dinic(){
        int ret = 0;
        while(bfs()){
            ret += dfs(s, INF);
        }
        return ret;
    }
    
    int main(){
    
        full(head, -1);
        n = read(), m = read();
        s = 1, t = hashpos(n, m);
        for(int i = 1; i <= n; i ++){
            for(int j = 1; j < m; j ++){
                int x = read();
                addEdge(hashpos(i, j), hashpos(i, j + 1), x);
            }
        }
        for(int i = 1; i < n; i ++){
            for(int j = 1; j <= m; j ++){
                int x = read();
                addEdge(hashpos(i, j), hashpos(i + 1, j), x);
            }
        }
        for(int i = 1; i < n; i ++){
            for(int j = 1; j < m; j ++){
                int x = read();
                addEdge(hashpos(i, j), hashpos(i + 1, j + 1), x);
            }
        }
        printf("%d
    ", dinic());
    }
    

    然后是dijkstra

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 1000005;
    int n, m, cnt, head[N<<2], s, t, dist[N<<2];
    bool vis[N<<2];
    struct Edge { int v, next, w; } edge[N<<3];
     
    void addEdge(int a, int b, int c){
        edge[cnt].v = b, edge[cnt].w = c, edge[cnt].next = head[a], head[a] = cnt ++;
        edge[cnt].v = a, edge[cnt].w = c, edge[cnt].next = head[b], head[b] = cnt ++;
    }
     
    int dijkstra(){
        full(dist, INF);
        priority_queue< pair<int, int>, vector< pair<int, int> >, greater< pair<int, int> > > pq;
        dist[s] = 0;
        pq.push(make_pair(dist[s], s));
        while(!pq.empty()){
            int cur = pq.top().second, d = pq.top().first; pq.pop();
            if(vis[cur]) continue;
            vis[cur] = true;
            for(int i = head[cur]; i != -1; i = edge[i].next){
                int u = edge[i].v;
                if(dist[u] > d + edge[i].w){
                    dist[u] = d + edge[i].w;
                    pq.push(make_pair(dist[u], u));
                }
            }
        }
        return dist[t];
    }
     
    int main(){
     
        full(head, -1);
        n = read(), m = read();
        s = 2 * (n - 1) * (m - 1) + 1, t = s + 1;
        for(int i = 1; i <= n; i ++){
            for(int j = 1; j < m; j ++){
                int x = read();
                if(i == 1) addEdge(s, j, x);
                else if(i == n) addEdge((2 * (n - 1) - 1) * (m - 1) + j, t, x);
                else addEdge((2 * (i - 1) - 1) * (m - 1) + j, 2 * (i - 1) * (m - 1) + j, x);
            }
        }
        for(int i = 1; i < n; i ++){
            for(int j = 1; j <= m; j ++){
                int x = read();
                if(j == 1) addEdge((2 * i - 1) * (m - 1) + 1, t, x);
                else if(j == m) addEdge(s, (2 * i - 1) * (m - 1), x);
                else addEdge(2 * (i - 1) * (m - 1) + j - 1, (2 * (i - 1) + 1) * (m - 1) + j, x);
            }
        }
        for(int i = 1; i < n; i ++){
            for(int j = 1; j < m; j ++){
                int x = read();
                addEdge(2 * (i - 1) * (m - 1) + j, 2 * (i - 1) * (m - 1) + j + (m - 1), x);
            }
        }
        printf("%d
    ", dijkstra());
        return 0;
    }
    
  • 相关阅读:
    struts 多文件上传 xml 版本
    struts 多文件上传 annotation注解(零配置)+ ajaxfileupload + 异步 版本
    struts 文件下载 annotation 注解版
    servlet 通过 FileItem 实现多文件上传
    servlet 文件下载
    MySQL抑制binlog日志中的BINLOG部分的方法
    基于PHP的一种Cache回调与自动触发技术
    php面向对象的简单总结 $this $parent self
    nodeJs基础方法
    JavaScript 中的多线程通信的方法
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10680015.html
Copyright © 2011-2022 走看看