zoukankan      html  css  js  c++  java
  • HDU6534 Chika and Friendly Pairs

    树状数组 + 莫队

    现场赛的时候树套树和主席树都没写出来TAT,比完发现正解是莫队。。

    思路比较简洁,化简一下不等式,可以发现对于每个值x,实际上是找[x-k-1...x+k]范围内的数有多少个。

    所以我们把所有数统统塞进树状数组,然后莫队暴力找就行啦。

    注意一下每一个pair都不能算上自己,所以在区间增加时,应先维护答案,再维护树状数组,区间减少时,先维护树状数组,再统计答案。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 30005;
    int n, m, k, tot;
    int a[N], b[3*N], lt[N], rt[N], tree[3*N], ans, res[N];
    struct Query{
        int l, r, block, id;
        bool operator < (const Query &rhs) const {
            return (block ^ rhs.block) ? l < rhs.l : (block & 1) ? r < rhs.r : r > rhs.r;
        }
    }query[N];
    
    void add(int index, int i){
        for(; index <= 3 * n; index += lowbit(index))
            tree[index] += i;
    }
    
    int response(int index){
        int ret = 0;
        for(; index; index -= lowbit(index))
            ret += tree[index];
        return ret;
    }
    
    int main(){
    
        n = read(), m = read(), k = read();
        for(int i = 1; i <= n; i ++){
            a[i] = read();
            b[++tot] = a[i], b[++tot] = a[i] + k, b[++tot] = a[i] - k;
        }
        sort(b + 1, b + tot + 1);
        tot = (int)(unique(b + 1, b + tot + 1) - b - 1);
        for(int i = 1; i <= n; i ++){
            lt[i] = (int)(lower_bound(b + 1, b + tot + 1, a[i] - k) - b);
            rt[i] = (int)(lower_bound(b + 1, b + tot + 1, a[i] + k) - b);
            a[i] = (int)(lower_bound(b + 1, b + tot + 1, a[i]) - b);
        }
        int t = (int)sqrt(n);
        for(int i = 1; i <= m; i ++){
            query[i].l = read(), query[i].r = read();
            query[i].id = i, query[i].block = (query[i].l - 1) / t + 1;
        }
        sort(query + 1, query + m + 1);
        int l = 1, r = 0;
        for(int i = 1; i <= m; i ++){
            int curL = query[i].l, curR = query[i].r;
            while(r < curR){
                r ++;
                ans += response(rt[r]) - response(lt[r] - 1);
                add(a[r], 1);
            }
            while(l > curL){
                l --;
                ans += response(rt[l]) - response(lt[l] - 1);
                add(a[l], 1);
            }
            while(r > curR){
                add(a[r], -1);
                ans -= response(rt[r]) - response(lt[r] - 1);
                r --;
            }
            while(l < curL){
                add(a[l], -1);
                ans -= response(rt[l]) - response(lt[l] - 1);
                l ++;
            }
            res[query[i].id] = ans;
        }
        for(int i = 1; i <= m; i ++){
            printf("%d
    ", res[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    Codeforces 1132D
    Codeforces 670F
    Codeforces 670E
    Codeforces 670E
    Codeforces 670E
    Codeforces 670
    Codeforces 1138
    Codeforces 1114E
    力扣21.合并两个有序链表
    力扣538.把二叉树转换为累加树
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10897196.html
Copyright © 2011-2022 走看看