zoukankan      html  css  js  c++  java
  • 洛谷P3332 K大数查询

    整体二分模板题

    如果没有修改的询问区间第k小or大,一般把原始值看成赋值操作,这样可以把询问和赋值同时二分,正确性显然。

    如果是单点修改,同样可以用树状数组赋值,修改一个数看-1再+1,因为每次增加和修改是成对出现的且二分不改变询问和修改的顺序,所以显然二分也是正确的。

    区间插入的话,和普通的整体二分差不多,改成线段树维护区间小于mid的数的个数,把增加一个数看成是线段树上区间的加+1。

    // luogu-judger-enable-o2
    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    #define __fastIn ios::sync_with_stdio(false), cin.tie(0)
    #define pb push_back
    using namespace std;
    using LL = long long;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int ret = 0, w = 0; char ch = 0;
        while(!isdigit(ch)){
            w |= ch == '-', ch = getchar();
        }
        while(isdigit(ch)){
            ret = (ret << 3) + (ret << 1) + (ch ^ 48);
            ch = getchar();
        }
        return w ? -ret : ret;
    }
    template <typename A>
    inline A __lcm(A a, A b){ return a / __gcd(a, b) * b; }
    template <typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 50005;
    int n, m, cur, cnt, ans[N], lazy[N<<2], cls[N<<2];
    LL sum[N<<2];
    struct Query{
        int op, id, x, y;
        LL k;
        Query(){}
        Query(int x, int y, LL k): x(x), y(y), k(k){
            op = 1, id = 0;
        }
        Query(int op, int id, int x, int y, LL k): op(op), id(id), x(x), y(y), k(k){}
    }v[N<<1], lq[N<<1], rq[N<<1];
    
    void push_up(int rt){
        sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
    }
    
    void push_down(int rt, int l, int r){
        if(cls[rt]){
            cls[rt] = 0;
            lazy[rt << 1] = lazy[rt << 1 | 1] = 0;
            sum[rt << 1] = sum[rt << 1 | 1] = 0;
            cls[rt << 1] = cls[rt << 1 | 1] = 1;
        }
        if(lazy[rt]){
            int mid = (l + r) >> 1;
            sum[rt << 1] += lazy[rt] * (mid - l + 1);
            sum[rt << 1 | 1] += lazy[rt] * (r - mid);
            lazy[rt << 1] += lazy[rt], lazy[rt << 1 | 1] += lazy[rt];
            lazy[rt] = 0;
        }
    }
    
    void insert(int rt, int l, int r, int il, int ir, int val){
        if(l == il && r == ir){
            sum[rt] += (r - l + 1) * val;
            lazy[rt] += val;
            return;
        }
        push_down(rt, l, r);
        int mid = (l + r) >> 1;
        if(ir <= mid) insert(rt << 1, l, mid, il, ir, val);
        else if(il > mid) insert(rt << 1 | 1, mid + 1, r, il, ir, val);
        else insert(rt << 1, l, mid, il, mid, val), insert(rt << 1 | 1, mid + 1, r, mid + 1, ir, val);
        push_up(rt);
    }
    
    LL query(int rt, int l, int r, int ql, int qr){
        if(l == ql && r == qr){
            return sum[rt];
        }
        push_down(rt, l, r);
        int mid = (l + r) >> 1;
        if(qr <= mid) return query(rt << 1, l, mid, ql, qr);
        else if(ql > mid) return query(rt << 1 | 1, mid + 1, r, ql, qr);
        return query(rt << 1, l, mid, ql, mid) + query(rt << 1 | 1, mid + 1, r, mid + 1, qr);
    }
    
    
    void solve(int L, int R, int l, int r){
        if(l > r) return;
        if(L == R){
            for(int i = l; i <= r; i ++){
                if(v[i].op == 2) ans[v[i].id] = L;
            }
            return;
        }
        int mid = (L + R) >> 1;
        int lp = 0, rp = 0;
        for(int i = l; i <= r; i ++){
            if(v[i].op == 1){
                if(v[i].k > mid) insert(1, 1, n, v[i].x, v[i].y, 1), rq[++rp] = v[i];
                else lq[++lp] = v[i];
            }
            else{
                LL ret = query(1, 1, n, v[i].x, v[i].y);
                if(ret >= v[i].k) rq[++rp] = v[i];
                else v[i].k -= ret, lq[++lp] = v[i];
            }
        }
        cls[1] = 1, sum[1] = lazy[1] = 0;
        for(int i = 1; i <= lp; i ++) v[l + i - 1] = lq[i];
        for(int i = 1; i <= rp; i ++) v[l + lp + i - 1] = rq[i];
        solve(L, mid, l, l + lp - 1);
        solve(mid + 1, R, l + lp, r);
    }
    
    int main(){
    
        //freopen("data.txt", "r", stdin);
        //freopen("out.txt", "w", stdout);
        scanf("%d%d", &n, &m);
        for(int i = 1; i <= m; i ++){
            int opt, x, y; LL k;
            scanf("%d%d%d%lld", &opt, &x, &y, &k);
            if(opt == 1){
                v[++cur] = Query(x, y, k);
            }
            else{
                v[++cur] = Query(2, ++ cnt, x, y, k);
            }
        }
        solve(0, n, 1, cur);
        for(int i = 1; i <= cnt; i ++){
            printf("%d
    ", ans[i]);
        }
        return 0;
    }
    
  • 相关阅读:
    The Water Problem(排序)
    Alisha’s Party(队列)
    The Hardest Problem Ever(字符串)
    火烧赤壁
    Jquery操作一遍过
    Django之认证系统
    Mysql漂流系列(一):MySQL的执行流程
    RESTful架构&简单使用Django rest framework
    git&github快速掌握
    jsonp突破浏览器同源策略
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/11396791.html
Copyright © 2011-2022 走看看