zoukankan      html  css  js  c++  java
  • 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)

    【题意】给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径)。n<=50000,m<=10^7。

    【算法】DFS树处理仙人掌

    【题解】参考:仙人掌相关问题的处理方法(未完待续)

    对仙人掌建立DFS树,参考无向图的点双连通分量Tarjan算法,在访问x时容易知道边(x,y)是否属于一个环。

    设f[x]表示x点向下延伸的最长链长度,对于不在环上的边(x,y),有f[x]=max{f[y]+1}。统计直径可以在访问每个y时进行ans=max{ans,f[x]+f[y]+1}从而完成子树x对答案的贡献。

    对于一个环,只在其DFS树中深度最小的点进行处理(其它点直接忽略环边的存在),假设当前这个点为x,其与深度最大的点y的连边为(x,y)。(这条边只要满足fa[y]≠x&&dfn[y]>dfn[x]就可以找到)

    假设这个环有cnt个点,在环上只有距离<=cnt/2的点对可以贡献答案。我们只需要维护每个点和其前面半圈的点构成的点对中的最大值,这可以用单调队列维护。

    但这样的话,前半圈的点与前面的点对会少考虑一部分,所以将环延伸半圈,即维护一圈半的点。最后记得枚举整个环更新f[x]。

    复杂度O(m)。

    #include<cstdio>
    #include<cstring>
    #include<cctype>
    #include<algorithm>
    using namespace std;
    int read(){
        char c;int s=0,t=1;
        while(!isdigit(c=getchar()))if(c=='-')t=-1;
        do{s=s*10+c-'0';}while(isdigit(c=getchar()));
        return s*t;
    }
    const int maxn=100010,maxm=20000010;
    struct edge{int v,from;}e[maxm];
    int first[maxn],tot,fa[maxn],a[maxn],f[maxn],q[maxn],dfn[maxn],low[maxn],ans,dfsnum=0,n,m;
    void insert(int u,int v){tot++;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
    void solve(int A,int B){
        int cnt=0;
        for(int i=B;i!=A;i=fa[i])a[++cnt]=f[i];a[++cnt]=f[A];
        for(int i=1;i<=cnt/2;i++)swap(a[i],a[cnt-i+1]);
        for(int i=cnt+1;i<=cnt+(cnt>>1);i++)a[i]=a[i-cnt];
        int head=0,tail=1;q[head]=1;
        for(int i=2;i<=cnt+(cnt>>1);i++){
            if(head<tail&&i-q[head]>cnt/2)head++;
            ans=max(ans,a[i]+a[q[head]]+i-q[head]);
            while(head<tail&&a[i]-i>=a[q[tail-1]]-q[tail-1])tail--;
            q[tail++]=i;
        }
        for(int i=2;i<=cnt;i++)f[A]=max(f[A],a[i]+min(i-1,cnt-i+1));
    }
    void dfs(int x,int father){
        dfn[x]=low[x]=++dfsnum;f[x]=0;
        for(int i=first[x];i;i=e[i].from)if(e[i].v!=father){
            int y=e[i].v;
            if(!dfn[y]){
                fa[y]=x;
                dfs(y,x);
                low[x]=min(low[x],low[y]);
            }else low[x]=min(low[x],dfn[y]);
            if(low[y]>dfn[x]){
                ans=max(ans,f[x]+f[y]+1);
                f[x]=max(f[x],f[y]+1);
            }
        }
        for(int i=first[x];i;i=e[i].from)
            if(e[i].v!=father&&fa[e[i].v]!=x&&dfn[e[i].v]>dfn[x])solve(x,e[i].v);
    }    
    int main(){
        n=read();m=read();
        for(int i=1;i<=m;i++){
            int k=read(),u=read();
            for(int j=2;j<=k;j++){
                int v=read();
                insert(u,v);insert(v,u);
                u=v;
            }
        }
        ans=0;
        dfs(1,0);
        printf("%d",ans);
        return 0;
    }
    View Code
  • 相关阅读:
    虚拟机vmware下安装Ghost XP——正确的解决方案
    spring结合quartz的定时的2种方式
    Spring ClassPathXmlApplicationContext和FileSystemXmlApplicationContext
    Spring--Quartz 任务调度的配置详解
    Redis并发问题
    Eclipse默认标签TODO,XXX,FIXME和自定义标签
    使用storyboard创建带有navigation的界面的简单方法
    Java高级之线程同步
    XCode中的单元测试:编写测试类和方法(内容意译自苹果官方文档)
    MapReduce 应用:TF-IDF 分布式实现
  • 原文地址:https://www.cnblogs.com/onioncyc/p/8308835.html
Copyright © 2011-2022 走看看