基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题



给出一个长度为N的数组,进行Q次查询,查询从第i个元素开始长度为l的子段所有元素之和。
例如,1 3 7 9 -1,查询第2个元素开始长度为3的子段和,1 {3 7 9} -1。3 + 7 + 9 = 19,输出19。
Input
第1行:一个数N,N为数组的长度(2 <= N <= 50000)。
第2 至 N + 1行:数组的N个元素。(-10^9 <= N[i] <= 10^9)
第N + 2行:1个数Q,Q为查询的数量。
第N + 3 至 N + Q + 2行:每行2个数,i,l(1 <= i <= N,i + l <= N)
Output
共Q行,对应Q次查询的计算结果。
Input示例
5
1
3
7
9
-1
4
1 2
2 2
3 2
1 5
Output示例
4
10
16
19
预处理前缀和。

1 #include <iostream> 2 using namespace std; 3 typedef long long ll; 4 ll sum[50005];//前缀和 5 ll a[50005]; 6 ll n; 7 void init() 8 { 9 sum[0]=0; 10 sum[1]=a[1]; 11 for(int i=2;i<=n;i++) 12 sum[i]=sum[i-1]+a[i]; 13 } 14 int main() 15 { 16 cin>>n; 17 for(int i=1;i<=n;i++) 18 cin>>a[i]; 19 ll q; 20 init(); 21 cin>>q; 22 while(q--) 23 { 24 ll i,l; 25 cin>>i>>l; 26 cout<<sum[l+i-1]-sum[i-1]<<endl; 27 } 28 return 0; 29 }