zoukankan      html  css  js  c++  java
  • C++生成随机数:正态分布(normal distribution)

    首次写博客,见谅!

    win32控制台程序

     1 #include "stdafx.h"
     2 #include <stdio.h>
     3 #include <iostream>
     4 #include <time.h>
     5 #include <stdlib.h>
     6 #include <math.h>
     7 
     8 using namespace std;
     9 
    10 
    11 double gaussrand()
    12 {
    13     static double V1, V2, S;
    14    static int phase = 0;
    15    double X;
    16     double a[100];
    17     srand((unsigned)time(NULL));
    18 
    19 for (int i = 0; i<100; i++)
    20     {
    21       if ( phase == 0 ) 
    22       {
    23         do 
    24         {
    25           double U1 = (double)rand() / RAND_MAX;
    26         double U2 = (double)rand() / RAND_MAX;
    27           V1 = 2 * U1 - 1;
    28           V2 = 2 * U2 - 1;
    29           S = V1 * V1 + V2 * V2;
    30         } 
    31         while(S >= 1 || S == 0);
    32         X = V1 * sqrt(-2 * log(S) / S);
    33       } 
    34       else
    35         X = V2 * sqrt(-2 * log(S) / S);
    36         phase = 1 - phase;
    37       //X = X * 0.04 + 40;
    38         a[i] = X;
    39         cout<<a[i]<<endl; 
    40     }
    41     return 0;
    42 }
    43 
    44 int main(int argc, char* argv[])
    45 {
    47   gaussrand(); 
    48   return 0;
    49 }

    这样生成的高斯分布随机数序列的期望为0.0,方差为1.0。若指定期望为E,方差为V,则只需增加:

    X = X * σ + μ;

    向屏幕输出 期望为0.0,方差为1.0的正态分布数据 100个

    在此感谢博友:yeahgis

    博客链接:http://www.cnblogs.com/yeahgis/archive/2012/07/13/2590485.html#2608670

       do 
         {
                double U1 = (double)rand() / RAND_MAX;
                double U2 = (double)rand() / RAND_MAX;
                V1 = 2 * U1 - 1;
                V2 = 2 * U2 - 1;
                S = V1 * V1 + V2 * V2;
        } 
            while(S >= 1 || S == 0);
            X = V1 * sqrt(-2 * log(S) / S);
            X = X * std + mean;                

     ////////////////////////////////////////////////////////////////////////////分割线 2014/02/19

    static double V1, V2, S;
        static int phase = 0;
        double X;
        srand((unsigned)time(NULL));
        for (int i = 0; i<10000; i++)
        {
            if ( phase == 0 ) 
            {
                do 
                {
                    double U1 = (double)rand() / RAND_MAX;
                    double U2 = (double)rand() / RAND_MAX;
                    V1 = 2 * U1 - 1;
                    V2 = 2 * U2 - 1;
                    S = V1 * V1 + V2 * V2;
                } 
                while(S >= 1 || S == 0);
                X = V1 * sqrt(-2 * log(S) / S);
            } 
            else
                X = V2 * sqrt(-2 * log(S) / S);
            phase = 1 - phase;
            X = X * std + mean;
    
            if(index != 5)
            {
                b[i] = b[i] - X;
            }
            else
            {    
                b[i] = b[i] + X;
            }
            //a[i] = X;
        }

    以上代码生产均值:mean,标准差:std的10000个正态分布随机数。

    (注意:在进行随机数生成过程中尽量不要使用其他代码影响随机数的生成过程,一下代码不可取)

     1 static double V1, V2, S;
     2     static int phase = 0;
     3     double X1;
     4     X1 = 0.0;
     5     int i;
     6     srand((unsigned)time(NULL));
     7     //srand((unsigned int)time(&now)/(j+1));
     8     for (i = 0; i<10000; i++)
     9     {
    10         if ( phase == 0 ) 
    11         {
    12             do 
    13             {
    14                 double U1 = (double)rand() / RAND_MAX;
    15                 double U2 = (double)rand() / RAND_MAX;    
    16                 V1 = 2 * U1 - 1;    
    17                 V2 = 2 * U2 - 1;
    18                 S = V1 * V1 + V2 * V2;
    19             }
    20             while(S >= 1 || S == 0);
    21             X1 = V1 * sqrt(-2 * log(S) / S);
    22         } 
    23         else
    24             X1 = V2 * sqrt(-2 * log(S) / S);
    25         phase = 1 - phase;
    26         //X1 = X1 * 0.04 + 40;
    27 
    28         X1 = X1 * σ + μ;
    29         if(CString("减环") == m_Clist1.GetItemText(j,5))
    30         {
    31             b[i] = b[i] - X1;
    32         }
    33         else if(CString("增环") == m_Clist1.GetItemText(j,5))
    34         {    
    35             b[i] = b[i] + X1;
    36         }
    37     }

    代码中的if else判断对随机数生产过程影响较大(可能是此判断过于复杂,在此存疑!)

  • 相关阅读:
    扩展的局域网
    参数估计
    以太网的 MAC 层
    poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数
    tarjan算法--求解无向图的割点和桥
    spfa负环判断
    codeforce 489d bfs分层处理
    并查集优化——压缩路径——秩优化
    SPFA_queue_链式前向星最短路 & HDU2433
    POJ3046选蚂蚁创建集合_线性DP
  • 原文地址:https://www.cnblogs.com/onwayo/p/2879049.html
Copyright © 2011-2022 走看看