zoukankan      html  css  js  c++  java
  • 最大流练习

    伊基的故事 I - 道路重建

    求关键边的数量
    跑一遍最大流,在残留网络中,预处理出源点可以到达的点和可以到达汇点的点
    枚举每一条满流的边,如果它的起点可以从源点到达,终点可以到达汇点,则该边是关键边
    注:预处理可到汇点的点的时候,可以沿着残留网络的反向边走,但判断是否能走要用正向边容量

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 500 + 10;
    const int M = (5000 + 10) * 2;
    const int INF = 1e9;
    
    int n, m, S, T;
    struct Edge
    {
    	int to, nxt, flow;	
    }line[M];
    int fist[N], idx;
    int cur[N], d[N];
    bool vis_s[N], vis_t[N];
    
    void add(int x, int y, int z)
    {
    	line[idx] = {y, fist[x], z};
    	fist[x] = idx ++;
    	line[idx] = {x, fist[y], 0};
    	fist[y] = idx ++;
    }
    
    bool bfs()
    {
    	queue<int> q;
    	memset(d, -1, sizeof d);
    	q.push(S), d[S] = 0, cur[S] = fist[S];
    	while(!q.empty()) 
    	{
    		int u = q.front(); q.pop();
    		for(int i = fist[u]; i != -1; i = line[i].nxt)
    		{
    			int v = line[i].to;
    			if(d[v] == -1 && line[i].flow)
    			{
    				d[v] = d[u] + 1;
    				cur[v] = fist[v];
    				if(v == T) return 1;
    				q.push(v);
    			}
    		}
    	}
    	return 0;
    }
    
    int find(int u, int limit)
    {
    	if(u == T) return limit;
    	int flow = 0;
    	for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
    	{
    		cur[u] = i; 
    		int v = line[i].to;
    		if(d[v] == d[u] + 1 && line[i].flow)
    		{
    			int t = find(v, min(line[i].flow, limit - flow));
    			if(!t) d[v] = -1;
    			line[i].flow -= t;
    			line[i ^ 1].flow += t;
    			flow += t;
    		} 
    	}	
    	return flow;
    }
    
    int dinic()
    {
    	int res = 0, flow;
    	while(bfs()) while(flow = find(S, INF)) res += flow;
    	return res;
    }
    
    void dfs(int u, bool st[], int t)
    {
    	st[u] = 1;
    	for(int i = fist[u]; i != -1; i = line[i].nxt)
    	{
    		int v = line[i].to;
    		if(line[i ^ t].flow && !st[v])
    			dfs(v, st, t);
    	}
    }
    
    int main()
    {
    	scanf("%d%d", &n, &m);
    	S = 0, T = n - 1;
    	memset(fist, -1, sizeof fist); 
    	for(int i = 1; i <= m; ++ i)
    	{
    		int a, b, c;
    		scanf("%d%d%d", &a, &b, &c);
    		add(a, b, c);
    	}
    	dinic();
    	dfs(S, vis_s, 0);
    	dfs(T, vis_t, 1);
    	
    	int res = 0;
    	for(int i = 0; i < idx; i += 2)
    	{
    		int u = line[i ^ 1].to, v = line[i].to;
    		if(!line[i].flow && vis_s[u] && vis_t[v]) ++ res;
    	}
    	printf("%d
    ", res);
    	return 0;
    }
    

    秘密挤奶机

    (N) 个点, (P) 条边的无向图,从 (1)(N) 完成 (T) 次行程,每条边只能走一次
    (T) 条路径中必须使用的最长的边的最小可能值

    最大流判定
    二分答案,判定是否可以只用不超过答案长度的边满足题意
    按照原图建双向边,容量都是 (1),若正向边反向边都流一次,等价于不流
    对于两个点之间,没有必要建 (4) 条边,可以将相同的边容量合并
    (1)(n) 的最大流就是路径的数量, 判断是否满足题意即可

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 200 + 10;
    const int M = (40000 + 10) * 2;
    const int INF = 1e9;
    
    int n, m, k, S, T;
    struct Edge
    {
    	int to, nxt, flow, w;
    }line[M];
    int fist[N], idx;
    int cur[N], d[N];
    
    void add(int x, int y, int z)
    {
    	line[idx] = {y, fist[x], 0, z};
    	fist[x] = idx ++;
    	line[idx] = {x, fist[y], 0, z};
    	fist[y] = idx ++;	
    }
    
    bool bfs()
    {
    	queue<int> q;
    	memset(d, -1, sizeof d);
    	q.push(S), d[S] = 0, cur[S] = fist[S];
    	while(!q.empty())
    	{
    		int u = q.front(); q.pop();
    		for(int i = fist[u]; i != -1; i = line[i].nxt)
    		{
    			int v = line[i].to;
    			if(d[v] == -1 && line[i].flow)
    			{
    				d[v] = d[u] + 1;
    				cur[v] = fist[v];
    				if(v == T) return 1;
    				q.push(v);
    			}
    		}
    	}
    	return 0;
    }
    
    int find(int u, int limit)
    {
    	if(u == T) return limit;
    	int flow = 0;
    	for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
    	{
    		cur[u] = i;
    		int v = line[i].to;
    		if(d[v] == d[u] + 1 && line[i].flow)
    		{
    			int t = find(v, min(line[i].flow, limit - flow));
    			if(!t) d[v] = -1;
    			line[i].flow -= t;
    			line[i ^ 1].flow += t;
    			flow += t;
    		}
    	}	
    	return flow;
    }
    
    int dinic()
    {
    	int res = 0, flow;
    	while(bfs()) while(flow = find(S, INF)) res += flow;
    	return res;	
    }
    
    bool check(int mid)
    {
    	for(int i = 0; i < idx; ++ i)
    		if(line[i].w > mid) line[i].flow = 0;
    		else line[i].flow = 1;
    	
    	return dinic() >= k;	
    }
    
    int main()
    {
    	scanf("%d%d%d", &n, &m, &k);
    	S = 1, T = n;
    	memset(fist, -1, sizeof fist);
    	for(int i = 1; i <= m; ++ i)
    	{
    		int a, b, c;
    		scanf("%d%d%d", &a, &b, &c);
    		add(a, b, c);
    	} 
    	
    	int l = 1, r = 1e6, res;
    	while(l <= r)
    	{
    		int mid = l + r >> 1;
    		if(check(mid))
    		{
    			res = mid;
    			r = mid - 1;
    		}
    		else l = mid + 1;
    	}
    	printf("%d
    ", res);
    	return 0;
    }
    

    餐饮

    三分图匹配(拆点)
    建图方式与二分图匹配类似
    防止一头牛被多次选择,把牛拆成两个点,入点和出点,限制加在入点和出点的边上,即设置容量为 (1)
    (把对点的限制转化到入点到出点的边的容量上)

    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 400 + 10;
    const int M = (20000 + 300 + 10) * 2;
    const int INF = 1e9;
    
    int n, F, D, S, T;
    struct Edge
    {
    	int to, nxt, flow;
    }line[M];
    int fist[N], idx;
    int cur[N], d[N];
    
    void add(int x, int y, int z)
    {
    	line[idx] = {y, fist[x], z};
    	fist[x] = idx ++;
    	line[idx] = {x, fist[y], 0};
    	fist[y] = idx ++;
    } 
    
    bool bfs()
    {
    	queue<int> q;
    	memset(d, -1, sizeof d);
    	q.push(S), d[S] = 0, cur[S] = fist[S];
    	while(!q.empty())
    	{
    		int u = q.front(); q.pop();
    		for(int i = fist[u]; i != -1; i = line[i].nxt)
    		{
    			int v = line[i].to;
    			if(d[v] == -1 && line[i].flow)
    			{
    				d[v] = d[u] + 1;
    				cur[v] = fist[v];
    				if(v == T) return 1;
    				q.push(v);
    			}
    		}
    	} 
    	return 0;
    }
    
    int find(int u, int limit)
    {
    	if(u == T) return limit;
    	int flow = 0;
    	for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
    	{
    		cur[u] = i;
    		int v = line[i].to;
    		if(d[v] == d[u] + 1 && line[i].flow)
    		{
    			int t = find(v, min(line[i].flow, limit - flow));
    			if(!t) d[v] = -1;
    			line[i].flow -= t;
    			line[i ^ 1].flow += t;
    			flow += t;
    		}
    	}
    	return flow;
    }
    
    int dinic()
    {
    	int res = 0, flow;
    	while(bfs()) while(flow = find(S, INF)) res += flow;
    	return res;	
    }
    
    int main()
    {
    	scanf("%d%d%d", &n, &F, &D);
    	S = 0, T = n * 2 + F + D + 1;
    	memset(fist, -1, sizeof fist);
    	for(int i = 1; i <= F; ++ i) add(S, n * 2 + i, 1);
    	for(int i = 1; i <= D; ++ i) add(n * 2 + F + i, T, 1);
    	for(int i = 1; i <= n; ++ i)
    	{
    		add(i, n + i, 1);
    		int a, b, t;
    		scanf("%d%d", &a, &b);
    		while(a -- )
    		{
    			scanf("%d", &t);
    			add(n * 2 + t, i, 1);
    		}
    		while(b -- )
    		{
    			scanf("%d", &t);
    			add(n + i, n * 2 + F + t, 1);
    		}
    	}
    	printf("%d
    ", dinic());
    	return 0;
    } 
    

    企鹅游行

    把冰块当做点, 企鹅当成流量, 起跳限制在点上, 考虑拆点

    • 从源点向每个冰块连一条容量为初始企鹅数量的边
    • 可以相互到达的冰块之间连两条容量为 (+infty) 的边
    • 考虑每个冰块的起跳限制,把每个冰块拆成入点和出点,从入点向出点连一条容量为起跳限制的边
    • 枚举每个点作为汇点, 判断最大流是否满流
    #include <bits/stdc++.h>
    using namespace std;
    
    #define x first
    #define y second
    typedef pair<int, int> PII;
    
    const int N = 100 * 2 + 10;
    const int M = (100 * 2 + 100 * 100 + 10) * 2;
    const int INF = 1e9;
    const double eps = 1e-8;
    
    int n, S, T;
    double D;
    struct Edge
    {
    	int to, nxt, flow;
    }line[M];
    int fist[N], idx;
    int cur[N], d[N];
    PII p[N];
    
    bool check(PII a, PII b)
    {
    	double dx = a.x - b.x, dy = a.y - b.y;
    	return dx * dx + dy * dy < D * D + eps;
    }
    
    void add(int x, int y, int z)
    {
    	line[idx] = {y, fist[x], z};
    	fist[x] = idx ++;
    	line[idx] = {x, fist[y], 0};
    	fist[y] = idx ++;
    }
    
    bool bfs()
    {
    	queue<int> q;
    	memset(d, -1, sizeof d);
    	q.push(S), d[S] = 0, cur[S] = fist[S];
    	while(!q.empty())
    	{
    		int u = q.front(); q.pop();
    		for(int i = fist[u]; i != -1; i = line[i].nxt)
    		{
    			int v = line[i].to;
    			if(d[v] == -1 && line[i].flow)
    			{
    				d[v] = d[u] + 1;
    				cur[v] = fist[v];
    				if(v == T) return 1;
    				q.push(v);
    			} 
    		} 
    	}
    	return 0;
    }
    
    int find(int u, int limit)
    {
    	if(u == T) return limit;
    	int flow = 0;
    	for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
    	{
    		cur[u] = i;
    		int v = line[i].to;
    		if(d[v] == d[u] + 1 && line[i].flow)
    		{
    			int t = find(v, min(line[i].flow, limit - flow));
    			if(!t) d[v] = -1;
    			line[i].flow -= t;
    			line[i ^ 1].flow += t;
    			flow += t;
    		}
    	}
    	return flow;
    }
    
    int dinic()
    {
    	int res = 0, flow;
    	while(bfs()) while(flow = find(S, INF)) res += flow;
    	return res;
    }
    
    int main()
    {
    	int __;
    	scanf("%d", &__);
    	while(__ -- )
    	{
    		memset(fist, -1, sizeof fist);
    		idx = 0;
    		scanf("%d%lf", &n, &D);
    		S = 0;
    		int tot = 0;
    		for(int i = 1; i <= n; ++ i)
    		{
    			int x, y, a, b;
    			scanf("%d%d%d%d", &x, &y, &a, &b);
    			p[i] = {x, y};
    			tot += a;
    			add(S, i, a);
    			add(i, i + n, b);
    		}
    		for(int i = 1; i <= n; ++ i)
    			for(int j = i + 1; j <= n; ++ j)
    				if(check(p[i], p[j]))
    				{
    					add(i + n, j, INF);
    					add(j + n, i, INF);
    				}
    		int cnt = 0;
    		for(int i = 1; i <= n; ++ i)
    		{
    			T = i;
    			for(int j = 0; j < idx; j += 2)
    			{
    				line[j].flow += line[j ^ 1].flow;
    				line[j ^ 1].flow = 0;
    			} 
    			if(dinic() == tot) 
    			{
    				printf("%d ", i - 1);
    				++ cnt; 
    			} 
    		}
    		if(!cnt) puts("-1");
    		else puts("");
    	}
    	return 0;
    }
    

    把猪舍看成点, 猪看做流量

    考虑一种建图方式:

    • 从源点向每个猪舍连一条容量为初始猪的数量的边
    • 从每个顾客向汇点连一条容量为购买数量的边
    • 从顾客可以打开的猪舍向该顾客连一条容量为 (+infty) 的边, 再从顾客向这些猪舍连一条容量为 (+infty) 的边

    上述的建图方式没有考虑时序性,造成后来的顾客可以先调整猪舍
    考虑一种考虑时序的新的建图方式,不考虑猪舍, 认为顾客可以把猪暂存, 使猪在顾客间流动

    • 若某猪舍第一次被打开, 则该顾客可以取的就是初始猪的数量, 从源点向顾客连一条容量为初始猪的边
    • 若某猪舍不是第一次被打开, 就从上一个打开这个猪舍的顾客向当前顾客连一条容量为 (+infty) 的边
    • 从每个顾客向汇点连一条容量为购买数量的边
    #include <bits/stdc++.h>
    using namespace std;
    
    const int N = 100 + 10;
    const int M = (100 * 1000 + N + 10) * 2;
    const int INF = 1e9;
    
    int n, m, S, T;
    struct Edge
    {
    	int to, nxt, flow;
    }line[M];
    int fist[N], idx;
    int cur[N], d[N];
    int w[1010], last[1010];
    
    void add(int x, int y, int z)
    {
    	line[idx] = {y, fist[x], z};
    	fist[x] = idx ++;
    	line[idx] = {x, fist[y], 0};
    	fist[y] = idx ++; 
    } 
    
    bool bfs()
    {
    	queue<int> q;
    	memset(d, -1, sizeof d);
    	q.push(S), d[S] = 0, cur[S] = fist[S];
    	while(!q.empty())
    	{
    		int u = q.front(); q.pop();
    		for(int i = fist[u]; i != -1; i = line[i].nxt)
    		{
    			int v = line[i].to;
    			if(d[v] == -1 && line[i].flow)
    			{
    				d[v] = d[u] + 1;
    				cur[v] = fist[v];
    				if(v == T) return 1;
    				q.push(v); 
    			}
    		}
    	}
    	return 0;
    }
    
    int find(int u, int limit)
    {
    	if(u == T) return limit;
    	int flow = 0;
    	for(int i = cur[u]; i != -1 && flow < limit; i = line[i].nxt)
    	{
    		cur[u] = i;
    		int v = line[i].to;
    		if(d[v] == d[u] + 1 && line[i].flow)
    		{
    			int t = find(v, min(line[i].flow, limit - flow));
    			if(!t) d[v] = -1;
    			line[i].flow -= t;
    			line[i ^ 1].flow += t;
    			flow += t;
    		}
    	}
    	return flow;
    }
    
    int dinic()
    {
    	int res = 0, flow;
    	while(bfs()) while(flow = find(S, INF)) res += flow;
    	return res;
    }
    
    int main()
    {
    	scanf("%d%d", &m, &n);
    	S = 0, T = n + 1;
    	memset(fist, -1, sizeof fist);
    	for(int i = 1; i <= m; ++ i) scanf("%d", &w[i]);
    	for(int i = 1; i <= n; ++ i)
    	{
    		int a, k, b;
    		scanf("%d", &a);
    		while(a -- )
    		{
    			scanf("%d", &k);
    			if(!last[k]) add(S, i, w[k]);
    			else add(last[k], i, INF);
    			last[k] = i;
    		}
    		scanf("%d", &b);
    		add(i, T, b);
    	}
    	printf("%d
    ", dinic());
    	return 0;
    }
    
  • 相关阅读:
    Zabbix实战-简易教程(7)--监控第一台host
    Zabbix实战-简易教程(6)--Server端高可用
    Zabbix实战-简易教程(5)--Proxy和Agent端(源码和yum方式)
    HDFS“慢节点”监控分析功能
    遇见InterruptedException异常,怎么办?
    遇见InterruptedException异常,怎么办?
    Hadoop Erasure Coding结构分析
    Hadoop Erasure Coding结构分析
    聊聊错误注入技巧
    聊聊错误注入技巧
  • 原文地址:https://www.cnblogs.com/ooctober/p/14418847.html
Copyright © 2011-2022 走看看