zoukankan      html  css  js  c++  java
  • Kubernetes集群资源监控

    Kubernetes集群资源监控

    对k8s来说主要监控集群本身和Pod,集群监控主要有集群节点资源的监控,要了解每个节点的资源利用率如何,工作负载如何,这样可以了解集群中是否增加或减少节点。节点数要了解可用的节点有多少,不可用的节点有多少,这样可以对集群的成本做一定的评估。运行的pod的数量将显示可以的节点数是否足够,当某些节点挂掉之后,是否影响集群负载,能撑起整个集群

    Pod的监控由这三个节点:kubernetes 指标,自身的指标主要是pod的实例数量和预期的数量,第二点容器的指标,每个pod要知道他的cpu、内存、网络的使用情况,第三点应用程序,主要和业务相关的

    kubernetes监控的方案

    监控方案 告警 特点 适用
    Zabbix Y 大量定制工作 大部分的互联网
    open-falcon Y 功能模块分解比较细,显得更复杂 系统和应用监控
    cAdvisor+Heapster+InfluxDB+Grafana Y 简单易用 容器监控
    cAvisor/exporter+Prometheus+Grafana Y 扩展性好 容器,应用,主机全方面监控

    cAdvisor+Heapster+InfluxDB+Grafana

    cAdisor是谷歌开源的一个容器监控系统,能采集容器的监控指标和宿主机的监控指标,Heapster这是谷歌开源的,主要收集cAdisor汇总的数据的,因为cAdisor不具有存储的功能只会实时的收集,用cAdisor必须要给他提供一个持久化存储,Heapster将每个节点cAdisor存储到InfluxDB中,cAdisor集成在kubelet中,只要kubelet启用的监控端口,都可以访问cAdisor收集的监控数据

    kubelet会暴露一个端口,这个端口就是cAdisor采集数据的监控指标,Heapster是运行在k8s中作为一个Pod,他会从每个节点中收集cAdisor采集的数据,采集完后会存储到InfluxDB数据库中,InfluxDB是一个时序的数据库,非常适合以时间为查询条件的数据,Grafana进行仪表盘的展示

    部署influxDB

    采用Deployment方式,命名空间为kube-system

    [root@k8s01 scripts]# cat influxdb.yaml
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          k8s-app: influxdb
      replicas: 1
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: influxdb
        spec:
          containers:
          - name: influxdb
            image: registry.cn-shenzhen.aliyuncs.com/cn-k8s/heapster-influxdb-amd64:v1.5.2
            volumeMounts:
            - mountPath: /data
              name: influxdb-storage
          volumes:
          - name: influxdb-storage
            emptyDir: {}
    
    ---
    
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-influxdb
      name: monitoring-influxdb
      namespace: kube-system
    spec:
      ports:
      - port: 8086
        targetPort: 8086
      selector:
        k8s-app: influxdb
    [root@k8s01 scripts]# kubectl create -f influxdb.yaml 
    deployment.apps/monitoring-influxdb created
    service/monitoring-influxdb created
    [root@k8s01 scripts]# kubectl get pods -n kube-system monitoring-influxdb-64f46fdcf-5jk8k 
    NAME                                  READY   STATUS    RESTARTS   AGE
    monitoring-influxdb-64f46fdcf-5jk8k   1/1     Running   0          18s
    [root@k8s01 scripts]#
    

    部署heapster

    Heapster首先从apiserver获取集群中所有Node的信息,然后通过这些Node上的kubelet获取有用数据,而kubelet本身的数据则是从cAdvisor得到。所有获取到的数据都被推到Heapster配置的后端存储中,并还支持数据的可视化。

    由于Heapster需要从apiserver获取数据,所以需要对其进行授权。用户为cluster-admin,集群管理员用户。

    [root@k8s01 scripts]# cat heapster.yaml
    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: heapster
      namespace: kube-system
    
    ---
    
    kind: ClusterRoleBinding
    apiVersion: rbac.authorization.k8s.io/v1beta1
    metadata:
      name: heapster
    roleRef:
      kind: ClusterRole
      name: cluster-admin
      apiGroup: rbac.authorization.k8s.io
    subjects:
      - kind: ServiceAccount
        name: heapster
        namespace: kube-system
    
    ---
    
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: heapster
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          k8s-app: heapster
      replicas: 1
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: heapster
        spec:
          serviceAccountName: heapster
          containers:
          - name: heapster
            image: registry.cn-shenzhen.aliyuncs.com/cn-k8s/heapster-amd64:v1.5.4
            imagePullPolicy: IfNotPresent
            command:
            - /heapster
            - --source=kubernetes:https://kubernetes.default
            - --sink=influxdb:http://monitoring-influxdb:8086
    
    ---
    
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        task: monitoring
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: Heapster
      name: heapster
      namespace: kube-system
    spec:
      ports:
      - port: 80
        targetPort: 8082
      selector:
        k8s-app: heapster
    [root@k8s01 scripts]# kubectl create -f heapster.yaml 
    serviceaccount/heapster created
    clusterrolebinding.rbac.authorization.k8s.io/heapster created
    deployment.apps/heapster created
    service/heapster created
    [root@k8s01 scripts]# kubectl get pods -n kube-system heapster-76d7cbbb56-lk27t 
    NAME                        READY   STATUS    RESTARTS   AGE
    heapster-76d7cbbb56-lk27t   1/1     Running   0          54s
    [root@k8s01 scripts]# 
    

    部署grafana

    [root@k8s01 scripts]# cat grafana.yaml
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: monitoring-grafana
      namespace: kube-system
    spec:
      selector:
        matchLabels:
          k8s-app: grafana
      replicas: 1
      template:
        metadata:
          labels:
            task: monitoring
            k8s-app: grafana
        spec:
          containers:
          - name: grafana
            image: registry.cn-shenzhen.aliyuncs.com/cn-k8s/heapster-grafana-amd64:v5.0.4
            ports:
              - containerPort: 3000
                protocol: TCP
            volumeMounts:
            - mountPath: /var
              name: grafana-storage
            env:
            - name: INFLUXDB_HOST
              value: monitoring-influxdb
            - name: GF_AUTH_BASIC_ENABLED
              value: "false"
            - name: GF_AUTH_ANONYMOUS_ENABLED
              value: "true"
            - name: GF_AUTH_ANONYMOUS_ORG_ROLE
              value: Admin
            - name: GF_SERVER_ROOT_URL
              value: /
          volumes:
          - name: grafana-storage
            emptyDir: {}
    
    ---
    
    apiVersion: v1
    kind: Service
    metadata:
      labels:
        kubernetes.io/cluster-service: 'true'
        kubernetes.io/name: monitoring-grafana
      name: monitoring-grafana
      namespace: kube-system
    spec:
      type: NodePort
      ports:
      - port : 80
        targetPort: 3000
      selector:
        k8s-app: grafana
    [root@k8s01 scripts]# kubectl create -f grafana.yaml 
    deployment.apps/monitoring-grafana created
    service/monitoring-grafana created
    [root@k8s01 scripts]# kubectl get pods -n kube-system monitoring-grafana-8546b578df-fbckb 
    NAME                                  READY   STATUS    RESTARTS   AGE
    monitoring-grafana-8546b578df-fbckb   1/1     Running   0          52s
    [root@k8s01 scripts]# 
    
    

    部署完成

    [root@k8s01 scripts]# kubectl get pods,svc -n kube-system 
    NAME                                      READY   STATUS    RESTARTS   AGE
    pod/coredns-6d8cfdd59d-8flfs              1/1     Running   2          47h
    pod/heapster-76d7cbbb56-lk27t             1/1     Running   0          12m
    pod/kube-flannel-ds-amd64-2pl7k           1/1     Running   10         7d23h
    pod/kube-flannel-ds-amd64-8b2rz           1/1     Running   1          30h
    pod/kube-flannel-ds-amd64-jtwwr           1/1     Running   5          8d
    pod/monitoring-grafana-8546b578df-fbckb   1/1     Running   0          110s
    pod/monitoring-influxdb-64f46fdcf-5jk8k   1/1     Running   0          18m
    
    NAME                          TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
    service/heapster              ClusterIP   10.0.0.190   <none>        80/TCP          12m
    service/kube-dns              ClusterIP   10.0.0.2     <none>        53/UDP,53/TCP   8d
    service/monitoring-grafana    NodePort    10.0.0.81    <none>        80:31920/TCP    110s
    service/monitoring-influxdb   ClusterIP   10.0.0.148   <none>        8086/TCP        18m
    [root@k8s01 scripts]# 
    
    

    通过31920端口访问:

  • 相关阅读:
    LAMP 服务器环境
    LAMP 环境搭建
    为何程序员总喜欢写技术博客,看完恍然大悟...
    沉入海底2年的微软数据中心浮出水面:故障率只有陆地上的1/8,除了长点贝类和藻类完全没问题...
    真正毁掉一个人的,是“打工者心态”
    包装严重的 IT 行业,作为面试官,我是如何甄别应聘者的包装程度
    一名测试实习生的心路历程(二)
    7年赚的2个亿,数学家6年就花光了,全砸在自家的房子上
    “蚂蚁牙黑,蚂蚁呀吼”一夜间火遍全网?别忽略了潜在风险
    面试常问的 25+ 个 Linux 命令
  • 原文地址:https://www.cnblogs.com/opesn/p/13155236.html
Copyright © 2011-2022 走看看