zoukankan      html  css  js  c++  java
  • 论文阅读笔记(六十三)【ACMMM2017】:Adversarial Cross-Modal Retrieval

    Introduction

    作者提出了一个新的跨模态检索框架 Adversarial Cross-Model Retrieval (ACMR),其利用对抗学习来缩小不同模态特征的gap。下图为框架图:

    Proposed Method

    问题定义:

    每对样本的特征定义为:,每对样本搭配一个语义标签向量,其中 c 为语义类的数量,如果第 i 个样本包含了语义 j,则。数据包含三个矩阵:图像特征矩阵、文本特征矩阵、语义标签矩阵,即,

    由于不同模态的特征有不同的特征分布,因此需要对特征进行投影,使得投影后的特征在相同的特征分布上,即:。ACMR方法旨在学习更有效的投影特征,使得不同模态的特征分布更加接近。

    模态分类器:

    模态分类器作为GAN网络的判别器,用于区分特征是来自图像或文本。若来自图像,则分配标签为01;若来自文本,则分配标签10。其设计为3层的卷积网络。对抗损失函数为:

    其中是每个样本的真实模态标签。

    特征投影:

    特征投影包含两步:标签预测 (label prediction) 以及结构保存 (structure preservation)。

    前者确保投影的特征具有对语义标签的判别力(可以理解为:如果是Person ReID,能够对行人的ID进行判别),模态内判别损失函数如下:

    后者确保投影的特征能够适应模态差异,即缩小模态之间的gap。作者基于三元组损失,设计了如下损失:

    1) 首先生成同标签不同模态的样本对。这里作者没有把所有样本对进行训练 (样本空间为 NxN),而是把所有图像、文本遍历取样 (样本空间为 2xN)。

    2) 采用L2距离,评估跨模态特征差异,即:

    3) 生成三元组样本对,计算三元组损失:

    4) 模态间损失计算为:

    为了避免过拟合,引入了正则化项,即:

    总结:特征投影损失为:

    对抗训练过程:

    minimax策略包含两步:

    Experiments

    数据集及特征:

    实验结果(mAP):

    特征分布可视化:

  • 相关阅读:
    使用git遇到的一些问题
    小程序的生命周期
    git status -s命令解析
    JavaScript 关闭浏览器窗口
    JavaScript 如何编写计算器
    JavaScript 数组对象的去重
    JavaScript 数组排序(从大到小,从小到大)
    JavaScript 常用的Math对象
    JavaScript 获取 当前日期和三十天以前日期
    JavaScript 获取数组的最大值和最小值
  • 原文地址:https://www.cnblogs.com/orangecyh/p/14424369.html
Copyright © 2011-2022 走看看