zoukankan      html  css  js  c++  java
  • Codeforces 1009 E. Intercity Travelling(计数)

    1009 E. Intercity Travelling

    题意:一段路n个点,走i千米有对应的a[i]疲劳值。但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加。休息与不休息等概率,设疲劳值总和的期望为p,求p*2n-1

    思路:由于期望乘上了2n-1,所以数学意义就是求所有休息情况下的疲劳值总和。问题转化为,每种疲劳出现的次数Ni。网上题解大多数从组合数的角度计数,可能是我理解能力不够,总觉得讲的不太严谨,推导的过程略显随意,更多像是找规律的结果。琢磨了一会,觉得这样计数更容易理解:

    对于疲劳a[1]而言,一个点就能出现。由于第一个点一定是a[1],则第一个点的a[1]的出现次数就是2n-1(后面的n-1个点任取,任取是指从a[1]开始还是接前一个的疲劳,2种情况)。而对于其余的任意一个点,出现a[1]的情况共2n-2种(第一个点固定是a[1],还剩n-2个点任取),这样的点有n-1个。故N1 = 2n-1+(n-1) * 2n-2.

    对于疲劳a[2]而言,一次要选连续的两个点才能出现。如果选了1,2两点,那么剩下n-2个点任取,共2n-2。而且对于其余的任意连续两点,第一个点是不会变的,除去本身两个确定,还剩n-3个点任取,共2n-3种情况,这样的连续两点有n-2种。因此N2 = 2n-2 + (n-2) * 2n-3.

    写到2就能推广到i:a[i]只能出现在连续的i个点下。于是分开讨论选连续的i个点里是否包含1,包含的话,共2n-i种情况,不包含则有2n-i-1种情况,这样的选法有n-i种。Ni = 2n-i + (n-i) * 2n-i-1.

    答案就是∑(Ni * ai)。

    代码:

    #include<bits/stdc++.h>
    #define dd(x) cout<<#x<<" = "<<x<<" "
    #define de(x) cout<<#x<<" = "<<x<<"
    "
    #define sz(x) int(x.size())
    #define All(x) x.begin(),x.end()
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    typedef pair<int,int> P;
    typedef priority_queue<int> BQ;
    typedef priority_queue<int,vector<int>,greater<int> > SQ;
    const int maxn=1e6+10,mod=998244353,INF=0x3f3f3f3f;
    ll a[maxn],pw[maxn]; 
    void init()
    {
    	pw[0]=1;
    	for (int i=1;i<maxn;++i)
    		pw[i]=pw[i-1]*2%mod;
    }
    inline ll add(ll a,ll b)
    {
    	a+=b;
    	return a>=mod?a-mod:a;
    }
    int main()
    {
    	ll n;
    	cin>>n;
    	init();
    	for (int i=1;i<=n;++i)
    		scanf("%lld",&a[i]);
    	ll ans=0;
    	for (ll i=1;i<=n;++i)
    		ans=add(ans,add(pw[n-i],(n-i+mod)%mod*pw[n-i-1]%mod)*a[i]%mod);
    	cout<<ans;
    	return 0;
    }
    
    
  • 相关阅读:
    事务(十四)
    事务(十三)
    事务(十二)
    事务(十一)
    事务(十)
    try中定义输入流报错:Try-with-resources are not supported at language level '5'
    IDEA新建时没有java class选项
    Hex编码
    Git Bash安装及常规使用
    PostgreSQL数据库
  • 原文地址:https://www.cnblogs.com/orangee/p/10299642.html
Copyright © 2011-2022 走看看