zoukankan      html  css  js  c++  java
  • Brownie Slicing 【二分】

    链接:https://ac.nowcoder.com/acm/contest/3886/B
    来源:牛客网

    题目描述

    Bessie has baked a rectangular brownie that can be thought of as an RxC grid (1 <= R <= 500; 1 <= C <= 500) of little brownie squares. The square at row i, column j contains NijN_{ij}Nij (0 <= NijN_{ij}Nij <= 4,000) chocolate chips.
    Bessie wants to partition the brownie up into A*B chunks (1 <= A <= R; 1 <= B <= C): one for each of the A*B cows. The brownie is cut by first making A-1 horizontal cuts (always along integer
    coordinates) to divide the brownie into A strips. Then cut each strip *independently* with B-1 vertical cuts, also on integer
    boundaries. The other A*B-1 cows then each choose a brownie piece, leaving the last chunk for Bessie. Being greedy, they leave Bessie the brownie that has the least number of chocolate chips on it.
    Determine the maximum number of chocolate chips Bessie can receive, assuming she cuts the brownies optimally.
    As an example, consider a 5 row x 4 column brownie with chips
    distributed like this:
             1 2 2 1
             3 1 1 1
             2 0 1 3
             1 1 1 1
             1 1 1 1
    Bessie must partition the brownie into 4 horizontal strips, each with two pieces. Bessie can cut the brownie like this:
           1 2 | 2 1
           ---------
           3 | 1 1 1
           ---------
           2 0 1 | 3
           ---------
           1 1 | 1 1
           1 1 | 1 1
    Thus, when the other greedy cows take their brownie piece, Bessie still gets 3 chocolate chips.

    输入描述:

    * Line 1: Four space-separated integers: R, C, A, and B
    * Lines 2..R+1: Line i+1 contains C space-separated integers: Ni1,...,NiCN_{i1}, ..., N_{iC}Ni1,...,NiC

    输出描述:

    * Line 1: A single integer: the maximum number of chocolate chips that Bessie guarantee on her brownie
    示例1

    输入

    复制
    5 4 4 2 
    1 2 2 1 
    3 1 1 1 
    2 0 1 3 
    1 1 1 1 
    1 1 1 1 
    

    输出

    复制
    3

    思路
      求一个最小值最大,很容易想到二分,枚举切行切列的情况 check
    CODE
      1 #include <bits/stdc++.h>
      2 #define dbg(x) cout << #x << "=" << x << endl
      3 #define eps 1e-8
      4 #define pi acos(-1.0)
      5 
      6 using namespace std;
      7 typedef long long LL;
      8 
      9 template<class T>inline void read(T &res)
     10 {
     11     char c;T flag=1;
     12     while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
     13     while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
     14 }
     15 
     16 namespace _buff {
     17     const size_t BUFF = 1 << 19;
     18     char ibuf[BUFF], *ib = ibuf, *ie = ibuf;
     19     char getc() {
     20         if (ib == ie) {
     21             ib = ibuf;
     22             ie = ibuf + fread(ibuf, 1, BUFF, stdin);
     23         }
     24         return ib == ie ? -1 : *ib++;
     25     }
     26 }
     27 
     28 int qread() {
     29     using namespace _buff;
     30     int ret = 0;
     31     bool pos = true;
     32     char c = getc();
     33     for (; (c < '0' || c > '9') && c != '-'; c = getc()) {
     34         assert(~c);
     35     }
     36     if (c == '-') {
     37         pos = false;
     38         c = getc();
     39     }
     40     for (; c >= '0' && c <= '9'; c = getc()) {
     41         ret = (ret << 3) + (ret << 1) + (c ^ 48);
     42     }
     43     return pos ? ret : -ret;
     44 }
     45 
     46 const int maxn = 507;
     47 
     48 int R,C,A,B;
     49 int a[maxn][maxn];
     50 int sum[maxn][maxn];
     51 
     52 bool check(int x) {
     53     int line_last, row_last;
     54     int line_have, row_have;
     55     line_have = 0, line_last = 0;
     56     
     57     for ( int i = 1; i <= R; ++i ) {
     58         row_have = 0, row_last = 0;
     59         for ( int j = 1; j <= C; ++j ) {
     60             //dbg(i), dbg(j);
     61             //printf("n1:%d n2:%d
    ",sum[i][j] - sum[i][row_last] - sum[line_last][j] + sum[line_last][row_last],x);
     62             if(sum[i][j] - sum[i][row_last] - sum[line_last][j] + sum[line_last][row_last] >= x) {
     63                 row_have++;
     64                 row_last = j;
     65             }
     66         }
     67         if(row_have >= B) {
     68             line_last = i;
     69             line_have++;
     70         }
     71     }
     72     dbg(line_have);
     73     return line_have >= A;
     74 }
     75 
     76 int main()
     77 {
     78     int l = 1, r = 0, mid = 0;
     79     scanf("%d %d %d %d",&R, &C, &A, &B);
     80     for ( int i = 1; i <= R; ++i ) {
     81         for ( int j = 1; j <= C; ++j ) {
     82             scanf("%d",&a[i][j]);
     83         }
     84     }
     85     for ( int i = 1; i <= R; ++i ) {
     86         for ( int j = 1; j <= C; ++j ) {
     87             sum[i][j] = sum[i - 1][j] + sum[i][j-1] - sum[i - 1][j - 1] + a[i][j];
     88         }
     89     }
     90     
     91     l = 1;
     92     r = sum[R][C];
     93     while(l + 1 <  r) {
     94         mid = (l + r) >> 1;
     95         //printf("l:%d r:%d
    ",l,r);
     96         //dbg(mid);
     97         if(check(mid)) {
     98             l = mid ;
     99         }
    100         else {
    101             r = mid ;
    102         }
    103     }
    104     cout << l << endl;
    105     return 0;
    106 }
    View Code
  • 相关阅读:
    DBCA创建数据库ORA-01034 ORACLE not available
    Linux shell 内部变量
    ext4文件系统制作
    curses-键盘编码-openssl加解密【转】
    Linux 中的键盘映射【转】
    C 语言 字符串命令 strstr()的用法 实现将原字符串以分割串分割输出【转】
    Linux下使用popen()执行shell命令【转】
    linux下获取按键响应事件【转】
    linux select函数:Linux下select函数的使用详解【转】
    OTA升级中关于update.zip包的一些总结【转】
  • 原文地址:https://www.cnblogs.com/orangeko/p/12398703.html
Copyright © 2011-2022 走看看