zoukankan      html  css  js  c++  java
  • Brownie Slicing 【二分】

    链接:https://ac.nowcoder.com/acm/contest/3886/B
    来源:牛客网

    题目描述

    Bessie has baked a rectangular brownie that can be thought of as an RxC grid (1 <= R <= 500; 1 <= C <= 500) of little brownie squares. The square at row i, column j contains NijN_{ij}Nij (0 <= NijN_{ij}Nij <= 4,000) chocolate chips.
    Bessie wants to partition the brownie up into A*B chunks (1 <= A <= R; 1 <= B <= C): one for each of the A*B cows. The brownie is cut by first making A-1 horizontal cuts (always along integer
    coordinates) to divide the brownie into A strips. Then cut each strip *independently* with B-1 vertical cuts, also on integer
    boundaries. The other A*B-1 cows then each choose a brownie piece, leaving the last chunk for Bessie. Being greedy, they leave Bessie the brownie that has the least number of chocolate chips on it.
    Determine the maximum number of chocolate chips Bessie can receive, assuming she cuts the brownies optimally.
    As an example, consider a 5 row x 4 column brownie with chips
    distributed like this:
             1 2 2 1
             3 1 1 1
             2 0 1 3
             1 1 1 1
             1 1 1 1
    Bessie must partition the brownie into 4 horizontal strips, each with two pieces. Bessie can cut the brownie like this:
           1 2 | 2 1
           ---------
           3 | 1 1 1
           ---------
           2 0 1 | 3
           ---------
           1 1 | 1 1
           1 1 | 1 1
    Thus, when the other greedy cows take their brownie piece, Bessie still gets 3 chocolate chips.

    输入描述:

    * Line 1: Four space-separated integers: R, C, A, and B
    * Lines 2..R+1: Line i+1 contains C space-separated integers: Ni1,...,NiCN_{i1}, ..., N_{iC}Ni1,...,NiC

    输出描述:

    * Line 1: A single integer: the maximum number of chocolate chips that Bessie guarantee on her brownie
    示例1

    输入

    复制
    5 4 4 2 
    1 2 2 1 
    3 1 1 1 
    2 0 1 3 
    1 1 1 1 
    1 1 1 1 
    

    输出

    复制
    3

    思路
      求一个最小值最大,很容易想到二分,枚举切行切列的情况 check
    CODE
      1 #include <bits/stdc++.h>
      2 #define dbg(x) cout << #x << "=" << x << endl
      3 #define eps 1e-8
      4 #define pi acos(-1.0)
      5 
      6 using namespace std;
      7 typedef long long LL;
      8 
      9 template<class T>inline void read(T &res)
     10 {
     11     char c;T flag=1;
     12     while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
     13     while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
     14 }
     15 
     16 namespace _buff {
     17     const size_t BUFF = 1 << 19;
     18     char ibuf[BUFF], *ib = ibuf, *ie = ibuf;
     19     char getc() {
     20         if (ib == ie) {
     21             ib = ibuf;
     22             ie = ibuf + fread(ibuf, 1, BUFF, stdin);
     23         }
     24         return ib == ie ? -1 : *ib++;
     25     }
     26 }
     27 
     28 int qread() {
     29     using namespace _buff;
     30     int ret = 0;
     31     bool pos = true;
     32     char c = getc();
     33     for (; (c < '0' || c > '9') && c != '-'; c = getc()) {
     34         assert(~c);
     35     }
     36     if (c == '-') {
     37         pos = false;
     38         c = getc();
     39     }
     40     for (; c >= '0' && c <= '9'; c = getc()) {
     41         ret = (ret << 3) + (ret << 1) + (c ^ 48);
     42     }
     43     return pos ? ret : -ret;
     44 }
     45 
     46 const int maxn = 507;
     47 
     48 int R,C,A,B;
     49 int a[maxn][maxn];
     50 int sum[maxn][maxn];
     51 
     52 bool check(int x) {
     53     int line_last, row_last;
     54     int line_have, row_have;
     55     line_have = 0, line_last = 0;
     56     
     57     for ( int i = 1; i <= R; ++i ) {
     58         row_have = 0, row_last = 0;
     59         for ( int j = 1; j <= C; ++j ) {
     60             //dbg(i), dbg(j);
     61             //printf("n1:%d n2:%d
    ",sum[i][j] - sum[i][row_last] - sum[line_last][j] + sum[line_last][row_last],x);
     62             if(sum[i][j] - sum[i][row_last] - sum[line_last][j] + sum[line_last][row_last] >= x) {
     63                 row_have++;
     64                 row_last = j;
     65             }
     66         }
     67         if(row_have >= B) {
     68             line_last = i;
     69             line_have++;
     70         }
     71     }
     72     dbg(line_have);
     73     return line_have >= A;
     74 }
     75 
     76 int main()
     77 {
     78     int l = 1, r = 0, mid = 0;
     79     scanf("%d %d %d %d",&R, &C, &A, &B);
     80     for ( int i = 1; i <= R; ++i ) {
     81         for ( int j = 1; j <= C; ++j ) {
     82             scanf("%d",&a[i][j]);
     83         }
     84     }
     85     for ( int i = 1; i <= R; ++i ) {
     86         for ( int j = 1; j <= C; ++j ) {
     87             sum[i][j] = sum[i - 1][j] + sum[i][j-1] - sum[i - 1][j - 1] + a[i][j];
     88         }
     89     }
     90     
     91     l = 1;
     92     r = sum[R][C];
     93     while(l + 1 <  r) {
     94         mid = (l + r) >> 1;
     95         //printf("l:%d r:%d
    ",l,r);
     96         //dbg(mid);
     97         if(check(mid)) {
     98             l = mid ;
     99         }
    100         else {
    101             r = mid ;
    102         }
    103     }
    104     cout << l << endl;
    105     return 0;
    106 }
    View Code
  • 相关阅读:
    数组 滑动窗口
    爬虫案例 下载某文库付费文档 全格式
    双指针 三数之和
    双指针 四数之和
    双指针法 环形链表 II
    判断是否手机端
    C# 模拟点击
    chrome 扩展开发注意事项
    破解拖动验 证码
    //刷新任务栏图标 终止别的进程序有些程序有托盘会残留
  • 原文地址:https://www.cnblogs.com/orangeko/p/12398703.html
Copyright © 2011-2022 走看看