zoukankan      html  css  js  c++  java
  • P1052 过河 【dp】

    题目描述

    在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧。在桥上有一些石子,青蛙很讨厌踩在这些石子上。由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数轴上的一串整点:0,1,…,L0,1,,L(其中LL是桥的长度)。坐标为00的点表示桥的起点,坐标为LL的点表示桥的终点。青蛙从桥的起点开始,不停的向终点方向跳跃。一次跳跃的距离是SS到TT之间的任意正整数(包括S,TS,T)。当青蛙跳到或跳过坐标为LL的点时,就算青蛙已经跳出了独木桥。

    题目给出独木桥的长度LL,青蛙跳跃的距离范围S,TS,T,桥上石子的位置。你的任务是确定青蛙要想过河,最少需要踩到的石子数。

    输入格式

    第一行有11个正整数L(1 le L le 10^9)L(1L109),表示独木桥的长度。

    第二行有33个正整数S,T,MS,T,M,分别表示青蛙一次跳跃的最小距离,最大距离及桥上石子的个数,其中1 le S le T le 101ST10,1 le M le 1001M100。

    第三行有MM个不同的正整数分别表示这MM个石子在数轴上的位置(数据保证桥的起点和终点处没有石子)。所有相邻的整数之间用一个空格隔开。

    输出格式

    一个整数,表示青蛙过河最少需要踩到的石子数。

    输入输出样例

    输入 #1
    10
    2 3 5
    2 3 5 6 7
    
    输出 #1
    2

    说明/提示

    对于30%的数据,L le 10000L10000;

    对于全部的数据,L le 10^9L109。

    2005提高组第二题

    思路

      用 f [ i ] 来表示走到第 i 个格子踩的最小的石子数。

      因为没办法开那么大的数组且 m 比较小,造成了太多不必要的计算浪费了时间,考虑去优化这个转移方程。

      因为空地太多,而大空地中的跳跃实际上对答案并没有影响,所以考虑如何把路径压缩下来。

      用到了一个叫小凯的疑惑的蓝题的一个结论,有兴趣的可以洛谷自行搜索下。

      考虑这样一个问题,对于一个在 [ S , T ] 中的每个元素 x , 只要 S != T  &&  X > S,都有一对元素 X - 1 和 X ,如果靠每次跳 X - 1 和 X 步来组合出跳的步数,最大可以跳 ( x - 2 ) * ( x - 1 ) - 1 的距离。

      因为 T 最大为10, 可以令跳的最大步数为100,来把两两距离超过100的石头之间的路径压缩。

      并且要特判一下 S == T 的情况, 这样的话只要求有多少石头在X的整数倍上就可以了。

    CODE

    #include <bits/stdc++.h>
    #define dbg(x) cout << #x << "=" << x << endl
    #define eps 1e-8
    #define pi acos(-1.0)

    using namespace std;
    typedef long long LL;

    const int inf = 0x3f3f3f3f;

    template<class T>inline void read(&res)
    {
        char c;T flag=1;
        while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;res=c-'0';
        while((c=getchar())>='0'&&c<='9')res=res*10+c-'0';res*=flag;
    }

    namespace _buff {
        const size_t BUFF = 1 << 19;
        char ibuf[BUFF], *ib = ibuf, *ie = ibuf;
        char getc() {
            if (ib == ie) {
                ib = ibuf;
                ie = ibuf + fread(ibuf, 1, BUFF, stdin);
            }
            return ib == ie ? -1 : *ib++;
        }
    }

    int qread() {
        using namespace _buff;
        int ret = 0;
        bool pos = true;
        char c = getc();
        for (; (< '0' || c > '9') && c != '-'; c = getc()) {
            assert(~c);
        }
        if (== '-') {
            pos = false;
            c = getc();
        }
        for (; c >= '0' && c <= '9'; c = getc()) {
            ret = (ret << 3) + (ret << 1) + (^ 48);
        }
        return pos ? ret : -ret;
    }

    const int maxn = 100007;

    int l;
    int s, t, m;

    int a[maxn];
    int f[maxn];
    int stone[maxn];

    int main()
    {
        read(l);
        read(s);read(t);read(m);
        for ( int i = 1; i <= m; ++) {
            read(a[i]);
        }   
        if(== t) {
            int ans = 0;
            for ( int i = 1; i <= m; ++) {
                if(a[i] % s == 0) {
                    ++ans;
                }
            }
            cout << ans << endl;
            return 0;
        }
        sort(+ 1, a + m + 1);
        for ( int i = 1, last = 0, offset = 0; i <= m; ++) {
            if(a[i] - last > 100) {
                offset += a[i] - last - 100;
            }
            last = a[i];
            a[i] -= offset;
        }
        // for ( int i = 1; i <= m; ++i ) {
        //     dbg(a[i]);
        // }
        for ( int i = 1; i <= m; ++) {
            stone[a[i]] = 1;
        }
        l = a[m] + 10;
        //f[0] = inf;
        for ( int i = 1; i <= l; ++) {
            f[i] = 200;
            for ( int j = s; j <= t; ++) {
                if(- j >= 0) {
                    f[i] = min(f[i], f[- j] + stone[i]);
                }
            }
        }
        cout << f[l] << endl;
        return 0;
    }
  • 相关阅读:
    接上一篇:(四) 控制反转(IOC)/ 依赖注入(DI)
    日常踩坑-------新手使用idea
    聚集索引和非聚集索引的区别
    mysql锁
    常用算法
    sql join查询语句
    bitmap原理和redis bitmap应用
    nginx反向代理、负载均衡配置
    nginx工作模式
    PHP常用设计模式
  • 原文地址:https://www.cnblogs.com/orangeko/p/12543710.html
Copyright © 2011-2022 走看看