zoukankan      html  css  js  c++  java
  • 17111 Football team

    时间限制:1000MS  内存限制:65535K
    提交次数:0 通过次数:0

    题型: 编程题   语言: C++;C

    Description

    As every one known, a football team has 11 players . Now, there is a big problem in front of the Coach Liu. The final contest is getting closer. 
    Who is the center defense, the full back or the forward? ...... There are n wonderful players for n positions in the team and Coach Liu know 
    everyone's abilities at different positions in matches. Assume that the team's power is the sum of the abilities of all n players according to 
    their positions, could you help Coach Liu to find out the max power his team can get?




    输入格式

    The first line is an integer n(n<11). Followed by n rows. Each row has n integer (0 to 1000) which represents the abilities of one player 
    at different positions.



    输出格式

    The max power.



    输入样例

    10
    4 6 3 3 4 5 7 4 9 0
    5 9 3 4 6 1 7 3 9 3
    1 5 8 0 5 4 2 7 9 3
    4 6 9 4 7 3 7 9 5 4
    2 0 1 3 2 5 8 4 6 2
    1 5 8 4 2 6 8 0 4 2
    1 4 2 6 8 9 4 2 6 8
    1 2 9 5 6 4 2 7 5 7
    2 4 7 5 8 5 3 2 6 4
    2 4 6 4 8 7 3 5 7 3
    



    输出样例

    76

    简单回溯:wa在由于now是全局变量,在每一次到达结束状态时,now的值不会因递归返回而改变(不像局部变量),而我是希望在递归枚举所有情况是now的值应该是返回上一状态的,
    故因 加一句:now-=mat[i][j]
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int n;
    int mat[12][12];
    int vis[12];
    int now=0;
    int maxr=0;
    void dfs(int cur)
    {
        int i;
        if(cur==n) {if(now>maxr) maxr=now;}
        else for(i=0;i<10;++i){
            if(!vis[i]){
                now+=mat[cur][i];//尝试选择第cur行第i列的数
                vis[i]=1;
                dfs(cur+1);
                vis[i]=0;
                now-=mat[cur][i];//谨记,now需随递归返回原来的值
            }
    
        }
    }
    int main()
    {
        memset(vis,0,sizeof(vis));
        memset(mat,0,sizeof(mat));
        scanf("%d",&n);
        for(int i=0;i<n;++i)
            for(int j=0;j<n;++j)
            scanf("%d",&mat[i][j]);
            dfs(0);
            printf("%d
    ",maxr);
    }
    
  • 相关阅读:
    ECharts 地图绘制与钻取简易接口
    css对齐方案总结
    原型链
    原生jQuery代码
    Jinja2用法总结
    url
    算法问题
    ORM
    tensorflow加载embedding模型进行可视化
    实现加减乘除任意组合的语法解析
  • 原文地址:https://www.cnblogs.com/orchidzjl/p/4366956.html
Copyright © 2011-2022 走看看