zoukankan      html  css  js  c++  java
  • 完全平方数的末两位数字类型的另一种证明

    1. 问题(来自Rosen的《初等数论及其应用》第6版P99第5题)

    证明完全平方数的最后两个十进制数字(个位和十位)一定是下列数对之一:{00, e1, e4, 25, o6, e9}

    注:e = even number, o = prime number, 0也为偶数

    2. 验证一下

    n n2 末尾数对类型
    0 0 00
    1 1 e1
    2 4 e4
    3 9 e9
    4 16 e4
    5 25 25
    6 36 o6
    7 49 e9
    8 64 e4
    9 81 e1

    3. 证明

    3.1 思路

    要证明n2的个位和十位的数值,简单的做法是将其表示出来,看是否满足一些规律

    n2 = n * n

    根据我们计算乘法的方法:

    设n = an…a2a1    (an ∈ {0, 1, …, 9})

    image

    放在百位以上的数据已经不影响个位和十位了

    设f(x) = x的个位和十位的数列

    可知n2的十位和个位f(n2) = f(a1a1 + 10*a2a1 + 10*a2a1)

                                   = f(a12 + 10*(2a2a1))

    ∴n2个位 = a12 的个位,n2的十位 = (2a2a1) + (a12 的十位)

    a1 a12 + 10*(2a2a1) 2a2(十位) 末尾数对类型
    0 0 0 00
    1 10*(0+2a2) + 1 2a2 = e e1
    2 10*(0+4a2) + 4 4a2 = e e4
    3 10*(0+6a2) + 9 6a2 = e e9
    4 10*(1+8a2) + 6 1+8a2 = o e4
    5 10*(2+10a2) + 5 2+10a2 = 2 25
    6 10*(3+12a2) + 6 3+12a2 = o o6
    7 10*(4+14a2) + 9 4+14a2 = e e9
    8 10*(6+16a2) + 4 6+16a2 = e e4
    9 10*(8+18a2) + 1 8+18a2 = e e1

    ∴对于所有的a1,不论a2的值是什么,f(n2)都成立,得证

    4. 推论

    根据第3部分的证明,我们还可以知道:

    1> 只要n的个位 = 5, 则n2个位和十位 = 25,反之也成立

    2> 只要n的个位 = 0, 则n2个位和十位 = 00,反之也成立

    3> 只要n的个位 = 6, 则n2个位和十位 = o6,反之也成立

    4> 不论a2的值是什么,n2个位和十位数列和a12一样,即n2个位和十位数列类型只和n个位相关

  • 相关阅读:
    jQuery cxCalendar 日期选择器
    JS中this的4种绑定规则
    Redis入门教程
    大型网站限流算法的实现和改造
    JS中的继承(下)
    剑指Offer面试题:6.旋转数组中的最小数字
    剑指Offer面试题:5.重建二叉树
    剑指Offer面试题:4.从尾到头打印链表
    C++之运算符重载
    剑指Offer面试题:3.替换空格
  • 原文地址:https://www.cnblogs.com/organic/p/6239583.html
Copyright © 2011-2022 走看看