zoukankan      html  css  js  c++  java
  • Aizu 2249 Road Construction (最短路 SPFA)

    King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazingly, there are no roads in the kingdom now. Recently, he planned to construct roads between the capital and the cities, but it turned out that the construction cost of his plan is much higher than expected.

    In order to reduce the cost, he has decided to create a new construction plan by removing some roads from the original plan. However, he believes that a new plan should satisfy the following conditions:

    For every pair of cities, there is a route (a set of roads) connecting them.
    The minimum distance between the capital and each city does not change from his original plan.
    Many plans may meet the conditions above, but King Mercer wants to know the plan with minimum cost. Your task is to write a program which reads his original plan and calculates the cost of a new plan with the minimum cost.

    Input

    The input consists of several datasets. Each dataset is formatted as follows.

    N M
    u1 v1 d1 c1
    .
    .
    .
    uM vM dM cM
    The first line of each dataset begins with two integers, N and M (1 ≤ N ≤ 10000, 0 ≤ M ≤ 20000). N and M indicate the number of cities and the number of roads in the original plan, respectively.

    The following M lines describe the road information in the original plan. The i-th line contains four integers, ui, vi, di and ci (1 ≤ ui, vi ≤ N , ui ≠ vi , 1 ≤ di ≤ 1000, 1 ≤ ci ≤ 1000). ui , vi, di and ci indicate that there is a road which connects ui-th city and vi-th city, whose length is di and whose cost needed for construction is ci.

    Each road is bidirectional. No two roads connect the same pair of cities. The 1-st city is the capital in the kingdom.

    The end of the input is indicated by a line containing two zeros separated by a space. You should not process the line as a dataset.

    Output

    For each dataset, print the minimum cost of a plan which satisfies the conditions in a line.

    Sample Input

    3 3
    1 2 1 2
    2 3 2 1
    3 1 3 2
    5 5
    1 2 2 2
    2 3 1 1
    1 4 1 1
    4 5 1 1
    5 3 1 1
    5 10
    1 2 32 10
    1 3 43 43
    1 4 12 52
    1 5 84 23
    2 3 58 42
    2 4 86 99
    2 5 57 83
    3 4 11 32
    3 5 75 21
    4 5 23 43
    5 10
    1 2 1 53
    1 3 1 65
    1 4 1 24
    1 5 1 76
    2 3 1 19
    2 4 1 46
    2 5 1 25
    3 4 1 13
    3 5 1 65
    4 5 1 34
    0 0
    Output for the Sample Input

    3
    5
    137
    218

    题意:

    问从1到N的路径花费和最小是多少。

    题解:

    求最短路的过程中,注意维护最小花费。

    #include<iostream>
    #include<queue>
    #include<vector>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int maxn=1e4+5,INF=0x3f3f3f3f;
    int d[maxn];
    int cost[maxn];
    bool used[maxn];
    int n,m;
    struct edge
    {
        int to,dis,c;
        edge(){}
        edge(int to,int dis,int c):to(to),dis(dis),c(c){}
    };
    vector<edge> G[maxn];
    void SPFA()
    {
        queue<int> que;
        memset(d,INF,sizeof(d));
        memset(used,false,sizeof(used));
        memset(cost,INF,sizeof(cost));
        d[1]=0;
        cost[1]=0;
        used[1]=true;
        que.push(1);
        while(que.size())
        {
            int u=que.front();
            que.pop();
            for(int i=0;i<G[u].size();i++)
            {
                edge e=G[u][i];
                if(d[e.to]>d[u]+e.dis)
                {
                    d[e.to]=d[u]+e.dis;
                    cost[e.to]=e.c;
                    if(!used[e.to])
                    {
                        used[e.to]=true;
                        que.push(e.to);
                    }
                }
                else if(d[e.to]==d[u]+e.dis&&cost[e.to]>e.c)//可以更新到该点的最小花费
                {
                    cost[e.to]=e.c;
                    if(!used[e.to])
                    {
                        used[e.to]=true;
                        que.push(e.to);
                    }
                }
            }
            used[u]=false;
        }
        int ans=0;
        for(int i=1;i<=n;i++)
            ans+=cost[i];
        cout<<ans<<endl;
    }
    int main()
    {
        while(cin>>n>>m,n||m)
        {
            for(int i=0;i<m;i++)
            {
                int u,v,dis,c;
                cin>>u>>v>>dis>>c;
                G[u].push_back(edge(v,dis,c));
                G[v].push_back(edge(u,dis,c));
            }
            SPFA();
            for(int i=1;i<=n;i++)
                G[i].clear();
        }
        return 0;
    }
    
  • 相关阅读:
    nginx-1.8.1的安装
    ElasticSearch 在3节点集群的启动
    The type java.lang.CharSequence cannot be resolved. It is indirectly referenced from required .class files
    sqoop导入导出对mysql再带数据库test能跑通用户自己建立的数据库则不行
    LeetCode 501. Find Mode in Binary Search Tree (找到二叉搜索树的众数)
    LeetCode 437. Path Sum III (路径之和之三)
    LeetCode 404. Sum of Left Leaves (左子叶之和)
    LeetCode 257. Binary Tree Paths (二叉树路径)
    LeetCode Questions List (LeetCode 问题列表)- Java Solutions
    LeetCode 561. Array Partition I (数组分隔之一)
  • 原文地址:https://www.cnblogs.com/orion7/p/7822199.html
Copyright © 2011-2022 走看看