King Mercer is the king of ACM kingdom. There are one capital and some cities in his kingdom. Amazingly, there are no roads in the kingdom now. Recently, he planned to construct roads between the capital and the cities, but it turned out that the construction cost of his plan is much higher than expected.
In order to reduce the cost, he has decided to create a new construction plan by removing some roads from the original plan. However, he believes that a new plan should satisfy the following conditions:
For every pair of cities, there is a route (a set of roads) connecting them.
The minimum distance between the capital and each city does not change from his original plan.
Many plans may meet the conditions above, but King Mercer wants to know the plan with minimum cost. Your task is to write a program which reads his original plan and calculates the cost of a new plan with the minimum cost.
Input
The input consists of several datasets. Each dataset is formatted as follows.
N M
u1 v1 d1 c1
.
.
.
uM vM dM cM
The first line of each dataset begins with two integers, N and M (1 ≤ N ≤ 10000, 0 ≤ M ≤ 20000). N and M indicate the number of cities and the number of roads in the original plan, respectively.
The following M lines describe the road information in the original plan. The i-th line contains four integers, ui, vi, di and ci (1 ≤ ui, vi ≤ N , ui ≠ vi , 1 ≤ di ≤ 1000, 1 ≤ ci ≤ 1000). ui , vi, di and ci indicate that there is a road which connects ui-th city and vi-th city, whose length is di and whose cost needed for construction is ci.
Each road is bidirectional. No two roads connect the same pair of cities. The 1-st city is the capital in the kingdom.
The end of the input is indicated by a line containing two zeros separated by a space. You should not process the line as a dataset.
Output
For each dataset, print the minimum cost of a plan which satisfies the conditions in a line.
Sample Input
3 3
1 2 1 2
2 3 2 1
3 1 3 2
5 5
1 2 2 2
2 3 1 1
1 4 1 1
4 5 1 1
5 3 1 1
5 10
1 2 32 10
1 3 43 43
1 4 12 52
1 5 84 23
2 3 58 42
2 4 86 99
2 5 57 83
3 4 11 32
3 5 75 21
4 5 23 43
5 10
1 2 1 53
1 3 1 65
1 4 1 24
1 5 1 76
2 3 1 19
2 4 1 46
2 5 1 25
3 4 1 13
3 5 1 65
4 5 1 34
0 0
Output for the Sample Input
3
5
137
218
题意:
问从1到N的路径花费和最小是多少。
题解:
求最短路的过程中,注意维护最小花费。
#include<iostream>
#include<queue>
#include<vector>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e4+5,INF=0x3f3f3f3f;
int d[maxn];
int cost[maxn];
bool used[maxn];
int n,m;
struct edge
{
int to,dis,c;
edge(){}
edge(int to,int dis,int c):to(to),dis(dis),c(c){}
};
vector<edge> G[maxn];
void SPFA()
{
queue<int> que;
memset(d,INF,sizeof(d));
memset(used,false,sizeof(used));
memset(cost,INF,sizeof(cost));
d[1]=0;
cost[1]=0;
used[1]=true;
que.push(1);
while(que.size())
{
int u=que.front();
que.pop();
for(int i=0;i<G[u].size();i++)
{
edge e=G[u][i];
if(d[e.to]>d[u]+e.dis)
{
d[e.to]=d[u]+e.dis;
cost[e.to]=e.c;
if(!used[e.to])
{
used[e.to]=true;
que.push(e.to);
}
}
else if(d[e.to]==d[u]+e.dis&&cost[e.to]>e.c)//可以更新到该点的最小花费
{
cost[e.to]=e.c;
if(!used[e.to])
{
used[e.to]=true;
que.push(e.to);
}
}
}
used[u]=false;
}
int ans=0;
for(int i=1;i<=n;i++)
ans+=cost[i];
cout<<ans<<endl;
}
int main()
{
while(cin>>n>>m,n||m)
{
for(int i=0;i<m;i++)
{
int u,v,dis,c;
cin>>u>>v>>dis>>c;
G[u].push_back(edge(v,dis,c));
G[v].push_back(edge(u,dis,c));
}
SPFA();
for(int i=1;i<=n;i++)
G[i].clear();
}
return 0;
}