zoukankan      html  css  js  c++  java
  • CodeForces 891A Pride (数学)

    You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

    What is the minimum number of operations you need to make all of the elements equal to 1?

    Input
    The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

    The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

    Output
    Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

    Example
    Input
    5
    2 2 3 4 6
    Output
    5
    Input
    4
    2 4 6 8
    Output
    -1
    Input
    3
    2 6 9
    Output
    4
    Note
    In the first sample you can turn all numbers to 1 using the following 5 moves:

    [2, 2, 3, 4, 6].
    [2, 1, 3, 4, 6]
    [2, 1, 3, 1, 6]
    [2, 1, 1, 1, 6]
    [1, 1, 1, 1, 6]
    [1, 1, 1, 1, 1]
    We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

    题意:

    相邻的两个数的GCD(最大公约数)可以替换其中的一个数,问最少需要多少步能将数列中的所有数全部都换成1。

    题解:

    首先,当数列中存在1的时候,答案明显就是N减去1的个数。不存在1的时候,想办法构造1出来,假设区间[L,R]的gcd为gcd(L, R) ,那么GCD(L, R + 1) = gcd(gcd(L,R), A(R + 1))。那么只要找到最短的区间使得gcd(L,R)==1,答案就是R-L+n-1了。

    #include<iostream>
    #include<algorithm>
    
    using namespace std;
    int a[2005];
    const int INF=0x3f3f3f3f;
    int gcd(int a,int b)
    {
        return b==0?a:gcd(b,a%b);
    }
    int main()
    {
        int n;
        while(cin>>n)
        {
            int cnt=0;
            for(int i=0;i<n;i++)
            {
                cin>>a[i];
                if(a[i]==1)
                    cnt++;
            }
            if(cnt)
            {
                cout<<n-cnt<<endl;
            }
            else
            {
                int t=INF;
                for(int i=0;i<n;i++)
                    for(int j=i,cur=0;j<n;j++)
                    {
                        if((cur=gcd(cur,a[j]))==1)
                            t=min(t,j-i),j=n;
                    }
                if(t==INF)
                    cout<<"-1"<<endl;
                else
                    cout<<t+n-1<<endl;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    Python 函数与函数式编程
    Python 字符编码与转码
    Python 读写txt文件操作
    两阶段事务总结
    MPPDB集群高可用设计
    MPPDB中的各个组件
    IntelliJ IDEA2016学习小结
    mysql免安装版配置
    理想的智能机
    java对象的大小
  • 原文地址:https://www.cnblogs.com/orion7/p/7898437.html
Copyright © 2011-2022 走看看