zoukankan      html  css  js  c++  java
  • CodeForces 891A Pride (数学)

    You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

    What is the minimum number of operations you need to make all of the elements equal to 1?

    Input
    The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

    The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

    Output
    Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

    Example
    Input
    5
    2 2 3 4 6
    Output
    5
    Input
    4
    2 4 6 8
    Output
    -1
    Input
    3
    2 6 9
    Output
    4
    Note
    In the first sample you can turn all numbers to 1 using the following 5 moves:

    [2, 2, 3, 4, 6].
    [2, 1, 3, 4, 6]
    [2, 1, 3, 1, 6]
    [2, 1, 1, 1, 6]
    [1, 1, 1, 1, 6]
    [1, 1, 1, 1, 1]
    We can prove that in this case it is not possible to make all numbers one using less than 5 moves.

    题意:

    相邻的两个数的GCD(最大公约数)可以替换其中的一个数,问最少需要多少步能将数列中的所有数全部都换成1。

    题解:

    首先,当数列中存在1的时候,答案明显就是N减去1的个数。不存在1的时候,想办法构造1出来,假设区间[L,R]的gcd为gcd(L, R) ,那么GCD(L, R + 1) = gcd(gcd(L,R), A(R + 1))。那么只要找到最短的区间使得gcd(L,R)==1,答案就是R-L+n-1了。

    #include<iostream>
    #include<algorithm>
    
    using namespace std;
    int a[2005];
    const int INF=0x3f3f3f3f;
    int gcd(int a,int b)
    {
        return b==0?a:gcd(b,a%b);
    }
    int main()
    {
        int n;
        while(cin>>n)
        {
            int cnt=0;
            for(int i=0;i<n;i++)
            {
                cin>>a[i];
                if(a[i]==1)
                    cnt++;
            }
            if(cnt)
            {
                cout<<n-cnt<<endl;
            }
            else
            {
                int t=INF;
                for(int i=0;i<n;i++)
                    for(int j=i,cur=0;j<n;j++)
                    {
                        if((cur=gcd(cur,a[j]))==1)
                            t=min(t,j-i),j=n;
                    }
                if(t==INF)
                    cout<<"-1"<<endl;
                else
                    cout<<t+n-1<<endl;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    Cisco ASR1002-X告警处理
    WLC5520无法通过无线客户端进行网管故障解决
    一键分享mob,方法二
    Java中堆内存和栈内存详解
    linux.linuxidc.com
    android中shape的使用(android:angle小解)
    Activity的Launch mode详解 :standard(默认), singleTop, singleTask和 singleInstance
    Android studio个人常用快捷键
    Android 公告新闻消息资讯之垂直滚动效果
    数据库设计相关
  • 原文地址:https://www.cnblogs.com/orion7/p/7898437.html
Copyright © 2011-2022 走看看