zoukankan      html  css  js  c++  java
  • [Math]Pi(2)

    [Math]Pi(2)

    接着前一篇,[Math]Pi(1),下面继续介绍Leonard Euler求Pi的第二个公式。

    其实这个公式也是来源一个古老的问题,Basel problem .

    证法1.麦克劳伦级数和零点式

    sin(x)的 Maclaurin Series为:

     $$ ecause sin(x) = x - frac{x^3}{3!} + frac{x^5}{5!} - frac{x^7}{7!} + cdots $$

    再把 $frac{sin(x)}{x}$ 表示成零点处的多项式:

    egin{align*}
    herefore frac{sin(x)}{x} &= 1 - frac{x^2}{3!} + frac{x^4}{5!} - frac{x^6}{7!} + cdots \
    &=left(1 - frac{x}{pi} ight)left(1 + frac{x}{pi} ight)left(1 - frac{x}{2pi} ight)left(1 + frac{x}{2pi} ight)left(1 - frac{x}{3pi} ight)left(1 + frac{x}{3pi} ight) cdots \
    &= left(1 - frac{x^2}{pi^2} ight)left(1 - frac{x^2}{4pi^2} ight)left(1 - frac{x^2}{9pi^2} ight) cdots
    end{align*}

    对比前面两式中的x2项的系数有: 

    $$-left(frac{1}{pi^2} + frac{1}{4pi^2} + frac{1}{9pi^2} + cdots ight) =-frac{1}{pi^2}sum_{n=1}^{infty}frac{1}{n^2}=-frac{1}{3!}$$
    egin{equation}label{E3} sum_{n=1}^{infty}frac{1}{n^2} = frac{pi^2}{6}. end{equation}

    证法2.傅里叶级数

    1.Fourier series

    $$ f(x)=dfrac{a_{0}}{2}+sum_{n=1}^{infty }(a_{n}cos nx+b_{n}sin x),-pi leq xleq pi $$
    其中,
    egin{align*}
    a_{n}&=dfrac{1}{pi }int_{-pi }^{pi }f(x)cos nx;dxqquad n=0,1,2,3,...,\
    b_{n}&=dfrac{1}{pi }int_{-pi }^{pi }f(x)sin nx;dxqquad n=1,2,3,... .
    end{align*}

    2. f(x) = x2

    n = 0, 

    $$a_{0}=dfrac{1}{pi }int_{-pi }^{pi }x^{2}dx=dfrac{2}{pi }int_{0}^{pi
    }x^{2}dx=dfrac{2pi ^{2}}{3}.$$

    n = 1, 2, 3, . . . 

    egin{align*}
    a_{n}&=dfrac{1}{pi }int_{-pi }^{pi }x^{2}cos nx;dx=dfrac{2}{pi }int_{0}^{pi }x^{2}cos nx;dx\
    &=dfrac{2}{pi } imes dfrac{2pi }{n^{2}}(-1)^{n}=(-1)^{n}dfrac{4}{n^{2}}\
    b_{n}&=dfrac{1}{pi }int_{-pi }^{pi }f(x)sin nx;dx=0
    end{align*}

    $$ ecause int olimits_0^{2pi} x^2cos nx;dx=left[dfrac{2x}{n^{2}}cos nx+left( frac{x^{2}}{n}-dfrac{2}{n^{3}} ight) sin nx ight]|_0^{2pi}=dfrac{2pi }{n^{2}}(-1)^{n}.$$

     因此,

    egin{equation}
    f(x)=dfrac{pi ^{2}}{3}+sum_{n=1}^{infty }left( (-1)^{n}dfrac{4}{n^{2}}cos nx ight)
    end{equation}

    f(π) = π2代入上式有:

    egin{align*}
    f(pi)&=dfrac{pi ^{2}}{3}+sum_{n=1}^{infty }left( (-1)^{n}dfrac{4}{n^{2}}cos npi ight)\
    &=dfrac{pi ^{2}}{3}+4sum_{n=1}^{infty }left( (-1)^{n}(-1)^{n}dfrac{1}{n^{2}} ight)\
    &=dfrac{pi ^{2}}{3}+4sum_{n=1}^{infty }dfrac{1}{n^{2}}.
    end{align*}

     最后,我们就可以得到:

    egin{equation}label{E5}
    sum_{n=1}^{infty }dfrac{1}{n^{2}}=dfrac{pi ^{2}}{4}-dfrac{pi ^{2}}{12}=dfrac{pi ^{2}}{6}
    end{equation}

    reference

    1. Basel problem

    2. StackOverFlow:Different Way to Compute basel problem

  • 相关阅读:
    恭喜你,你毕业了
    用VB.Net2008制作安装程序详细步骤(菜鸟级别,高手勿进)
    交通标志结构计算软件开发进程
    【工作笔记002】在TC中建立应用于出行分布的阻抗矩阵(最短路矩阵)
    VB.Net 2008 引用Excel12
    开博,开播。
    【推荐】万物兴歇——衰老与寿命的演化
    一张交叉口渠划的彩色平面图
    萦绕在头脑中的思路_我的编程梦们 【更新至2010.06.03】
    8月份的回顾
  • 原文地址:https://www.cnblogs.com/ouxiaogu/p/3399881.html
Copyright © 2011-2022 走看看