「NOI2018」屠龙勇士(EXCRT)
终于把传说中 (NOI2018D2) 的签到题写掉了。。。
开始我还没读懂题目。。。而且这题细节巨麻烦。。。(可能对我而言)
首先我们要转换一下,每次的 (atk[i]) 都可以用 (multiset) 找。
我们发现题目求的是 (atk*xequiv a_i( ext{mod} p_i)),所以我们做一遍 (exgcd),求出同余方程。
然后就可以愉快的 (EXCRT) 了~
不过发现一次要把龙的血量清零,所以一定要减到负数。我们在求 (atk[i]) 的时候顺便求一下最大值就行了。
当然,中间无论什么时候无解都输出 (-1)
(Code Below:)
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=100000+10;
int n,m,flag;ll a[maxn],p[maxn],b[maxn],c[maxn],A[maxn],B[maxn],Max;
multiset<ll> s;
multiset<ll>::iterator it;
void exgcd(ll a,ll b,ll &g,ll &x,ll &y){
if(b==0){
g=a;x=1;y=0;
return;
}
exgcd(b,a%b,g,y,x);
y-=(a/b)*x;
}
inline ll mul(ll a,ll b,ll mod){
ll ret=0;b=(b%mod+mod)%mod;
for(;b;b>>=1,a=(a+a)%mod)
if(b&1) ret=(ret+a)%mod;
return ret;
}
inline void merge(ll &a1,ll &b1,ll a2,ll b2){
ll d=a2-a1,g,x,y;
exgcd(b1,b2,g,x,y);
if(d%g==0){
x=(mul(x,d/g,b2/g)+(b2/g))%(b2/g);
a1=x*b1+a1;b1=b1/g*b2;
}
else flag=1;
}
inline ll excrt(ll *a,ll *b){
ll a1,b1,a2,b2;
a1=a[1];b1=b[1];
for(int i=2;i<=n;i++){
a2=a[i];b2=b[i];
merge(a1,b1,a2,b2);
if(flag) return -1;
}
if(a1>=Max) return a1;
return a1+((Max-a1)/b1+((Max-a1)%b1?1:0))*b1;
}
int main()
{
int T;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);flag=Max=0;s.clear();
ll d,g,x,y;
for(int i=1;i<=n;i++) scanf("%lld",&a[i]);
for(int i=1;i<=n;i++) scanf("%lld",&p[i]);
for(int i=1;i<=n;i++) scanf("%lld",&b[i]);
for(int i=1;i<=m;i++){
scanf("%lld",&x);
s.insert(x);
}
for(int i=1;i<=n;i++){
it=s.upper_bound(a[i]);
if(it!=s.begin()) it--;
c[i]=*it;s.erase(s.find(*it));s.insert(b[i]);
Max=max(Max,a[i]/c[i]+(a[i]%c[i]?1:0));
}
//atk * x = a_1 (mod p_1)
for(int i=1;i<=n;i++){
d=a[i];exgcd(c[i],p[i],g,x,y);
if(d%g){flag=1;break;}
x=(mul(x,d/g,p[i]/g)+(p[i]/g))%(p[i]/g);
A[i]=x;B[i]=p[i]/g;
}
if(flag) printf("-1
");
else printf("%lld
",excrt(A,B));
}
return 0;
}