原文: https://www.cnblogs.com/quchunhui/p/13402808.html
-----------------------------------------------------------
==背景==
数据库:我们的生产环境中有一个设备运行的数据库使用的是InfluxDB,这里面存储了所有设备上报上来的实时运行数据,数据量增速较快。
功能需求:产品有一个叫趋势分析的功能,用来按照不同的算子(mean、max等),不同的时间段(1分钟、30分钟)等对数据进行聚合。
==版本==
1.7.1、单机版
==问题==
经过压力测试之后,发现当聚合时间选择1分钟、5分钟等细粒度的时间的是偶,聚合的速度非常的慢。
概括一句话:基于原始数据进行实时聚合,不合理
==解决思路==
InfluxDB提供了连续查询的高级功能,尝试在每天凌晨的时候将数据聚合好,
官方文档:https://docs.influxdata.com/influxdb/v1.7/query_language/continuous_queries/
强烈建议把官方文档从头到尾浏览一遍,是学习一门技术最好的入门方法。
==初次尝试==
1、创建存储聚合结果的数据库
create database rexel_analysis
2、为数据库创建保存策略
设置数据留存时间为1年(365天)。
create retention policy one_year on rexel_analysis duration 365d replication 1 default
3、创建数据库权限
出于安全考虑,为数据库做了ACL权限。
GRANT read ON rexel_analysis TO devread GRANT write ON rexel_analysis TO devwrite GRANT all ON rexel_analysis TO devall
4、创建一个连续查询
CREATE CONTINUOUS QUERY cq_mean_1m ON rexel_private BEGIN SELECT mean(*) INTO rexel_analysis.one_year.data_up_1m FROM rexel_private.one_year.device_data_up GROUP BY time(1m) END
5、查看已有连续查询
SHOW CONTINUOUS QUERIES

6、查看连续查询的计算结果
从结果上可以看到,连续查询按照我预设的每分钟执行1次,并将结果插入到了另一个数据库中。
use rexel_analysis
show measurements
select mean_AI01_0001, mean_AR03_0256 from data_up_1m order by desc tz('Asia/Shanghai')

7、删除连续查询
DROP CONTINUOUS QUERY cq_mean_1m ON rexel_private
8、修改连续查询
根据官网的介绍,创建CQ之后,无法进行更改,如果需要更改需要drop掉之后重新create。
9、查询连续查询的日志
待补充
==初次尝试体验==
以上是初次尝试InfluxDB的连续查询的过程,有几个体验:
【好的体验】
1、可以看到连续查询会按照指定的时间计划对数据进行聚合,并将结果保存到指定的地方,是一个很好的解决性能的思路。
2、表中的字段有好几千个,使用带有通配符(*)的函数和INTO查询的反向引用语法,可以自动对数据库中所有度量和数字字段中的数据进行降采样。
【不好的体验】
1、每次连续查询时间间隔很短(时间间隔 = now() - group by time())
2、查询结果的字段别名比较恶心,比如原来字段叫AI01_0001,因为计算的是mean,结果库中的字段名就变为了mean_AI01_0001。
==配置采样频率与时间范围==
连续查询提供了高级语法:RESAMPLE EVERY FOR
CREATE CONTINUOUS QUERY <cq_name> ON <database_name> [RESAMPLE [EVERY <interval>] [FOR <interval>]] BEGIN SELECT <function>(<stuff>)[,<function>(<stuff>)] INTO <different_measurement> FROM <current_measurement> [WHERE <stuff>] GROUP BY time(<interval>)[,<stuff>] END
RESAMPLE EVERY :采样执行频次。如RESAMPLE EVERY 30m:表示30分钟执行一次。
RESAMPLE FOR :采样时间范围。如RESAMPLE FOR 60m:时间范围 = now() - for间隔(60m)。
RESAMPLE EVERY 30m FOR 60m:表示每30分钟执行一次60分钟内的数据计算。
注意:
如果此时在<cq_query>中使用了GROUP BY time duration,那么FOR定义的duration必须大于或者等于GROUP BY指定的time duration,不然就会报错。
反过来,如果EVERY定义的duration 大于GROUP BY指定的time duration,那么执行将按照EVERY定义的duration来执行。
例如:如果GROUP BY time(5m)且EVERY间隔为10m,则CQ每十分钟执行一次
==语句样例==
每1分钟执行1次平均值计算,时间范围1分钟 CREATE CONTINUOUS QUERY cq_mean_1m ON rexel_private BEGIN SELECT mean(*) INTO rexel_analysis.one_year.data_up_1m FROM rexel_private.one_year.device_data_up GROUP BY time(1m) END 每1分钟执行1次平均值计算,时间范围1天 CREATE CONTINUOUS QUERY cq_mean_1m ON rexel_private RESAMPLE FOR 1d BEGIN SELECT mean(*) INTO rexel_analysis.one_year.data_up_1m FROM rexel_private.one_year.device_data_up GROUP BY time(1m) END
==项目实践==
经过上面一番体验之后,对连续查询已经有了基本的了解,那么实际中如何使用呢?
我们的场景:
1、可选的时间组(共8个):1分钟、5分钟、30分钟、1小时、6小时、12小时、1天、1周
2、可选的聚合模式(共8个):最老值(last)、最新值(first)、最大值(max)、最小值(min)、平均值(mean)、中间值(median)、极差值(spread)、累加值(sum)
3、时间范围:最多3个月


那么,连续查询策略该如何设计呢?
【方案一】
按照时间组和聚合模式的排列组合创建查询策略。如下图所示,这种方案一共需要创建64个连续查询,感觉有些啰嗦。

【方案二】
按照和时间组创建查询策略。如下图所以,每一行的查询策略是一样的,各个聚合方法的结果放在同一张表中。
这样减少了连续查询的数量,维护也方便了很多。

表中的数据大概是这个样子的

【方案三】
将方案二工具化,在mysql中创建一个关于influxdb连续查询的字典表,根据这个表来自动创建连续查询。(思想:让机器做的更多)
建表语句及数据如下:
SET NAMES utf8mb4;
SET FOREIGN_KEY_CHECKS = 0;
-- ----------------------------
-- Table structure for influx_cq_dict
-- ----------------------------
DROP TABLE IF EXISTS `influx_cq_dict`;
CREATE TABLE `influx_cq_dict` (
`cq_name` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '连续查询的名称',
`from_database` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '源数据库',
`from_retention_policy` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '源存储策略',
`from_measurement` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '源表名',
`to_database` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '目标数据库',
`to_retention_policy` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '目标存储策略',
`to_measurement` varchar(50) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '目标表名',
`for_interval` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '时间间隔',
`every` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL COMMENT '执行频率',
`field` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '查询字段',
`func` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '聚合功能',
`group_by_time` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT 'GROUP BY指定的time duration',
`fill` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '空白填充方式',
`is_delete` varchar(1) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL DEFAULT '0' COMMENT '是否删除 0,未删除;1:删除',
PRIMARY KEY (`cq_name`) USING BTREE
) ENGINE = InnoDB AUTO_INCREMENT = 146 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci COMMENT = 'InfluxDB连续查询字典表' ROW_FORMAT = Dynamic;
-- ----------------------------
-- Records of influx_cq_dict
-- ----------------------------
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_12h', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_12h', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '12h', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_1d', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_1d', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '1d', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_1h', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_1h', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '1h', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_1m', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_1m', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '1m', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_1w', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_1w', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '1w', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_30m', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_30m', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '30m', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_5m', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_5m', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '5m', 'none', '0');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_5m_test', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_5m_test', '1h', '5m', 'AI01_0001,AI01_0002', 'last,first,max,min,mean,median,spread,sum', '5m', 'none', '1');
INSERT INTO `influx_cq_dict` VALUES ('cq_device_data_up_6h', 'rexel_online', 'one_year', 'device_data_up', 'rexel_online_analysis', 'one_year', 'device_data_up_6h', '1d', '1d', '*', 'last,first,max,min,mean,median,spread,sum', '6h', 'none', '0');
SET FOREIGN_KEY_CHECKS = 1;
==Java代码==
1、Controller类
package com.rexel.backstage.project.tool.init.controller;
import com.rexel.backstage.project.tool.init.service.IInfluxCqDictService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import com.rexel.backstage.framework.web.controller.BaseController;
import com.rexel.backstage.framework.web.domain.AjaxResult;
/**
* InfluxDB连续查询Controller
*
* @date 2020-07-30
*/
@RestController
@RequestMapping("/rexel/tool/influx/continuousQuery")
public class InfluxCqDictController extends BaseController {
private IInfluxCqDictService influxCqDictService;
@Autowired
public void setInfluxCqDictService(IInfluxCqDictService influxCqDictService) {
this.influxCqDictService = influxCqDictService;
}
/**
* 创建InfluxDB连续查询
*/
@PostMapping("/refresh")
public AjaxResult refresh(@RequestParam("type") String type) {
return AjaxResult.success(influxCqDictService.refreshContinuousQuery(type));
}
}
2、Service接口类
package com.rexel.backstage.project.tool.init.service;
import com.alibaba.fastjson.JSONObject;
/**
* InfluxDB连续查询Service接口
*
* @author admin
* @date 2020-07-30
*/
public interface IInfluxCqDictService {
/**
* 刷新InfluxDB连续查询
*
* @param type create/drop
* @return 结果
*/
JSONObject refreshContinuousQuery(String type);
}
3、Service实现类
package com.rexel.backstage.project.tool.init.service.impl;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.rexel.backstage.project.tool.init.domain.InfluxCqDict;
import com.rexel.backstage.project.tool.init.mapper.InfluxCqDictMapper;
import com.rexel.backstage.project.tool.init.service.IInfluxCqDictService;
import com.rexel.influxdb.InfluxUtils;
import com.rexel.influxdb.constans.InfluxSql;
import java.util.ArrayList;
import java.util.List;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
/**
* InfluxDB连续查询Service业务层处理
*
* @author admin
* @date 2020-07-30
*/
@Service
@Slf4j
public class InfluxCqDictServiceImpl implements IInfluxCqDictService {
private InfluxUtils influxUtils = InfluxUtils.getInstance();
private InfluxCqDictMapper influxCqDictMapper;
private List<InfluxCqDict> influxCqDictList;
private final static String INIT = "init";
private final static String DROP = "drop";
private final static String CREATE = "create";
@Autowired
public void setInfluxCqDictMapper(InfluxCqDictMapper influxCqDictMapper) {
this.influxCqDictMapper = influxCqDictMapper;
}
/**
* 刷新InfluxDB连续查询
*
* @return 结果
*/
@Override
public JSONObject refreshContinuousQuery(String type) {
influxCqDictList = influxCqDictMapper.selectInfluxCqDictList();
// 首次
if (INIT.toLowerCase().equals(type.toLowerCase())) {
recreateDatabase();
dropAllCp();
createAllCp();
}
// 删除
if (DROP.toLowerCase().equals(type.toLowerCase())) {
dropAllCp();
}
// 创建
if (CREATE.toLowerCase().equals(type.toLowerCase())) {
dropAllCp();
createAllCp();
}
return new JSONObject();
}
/**
* 获取源数据库列表
*
* @return 列表
*/
private List<String> getDatabaseFrom() {
List<String> result = new ArrayList<>();
for(InfluxCqDict influxCqDict : influxCqDictList) {
String database = influxCqDict.getFromDatabase();
if (!result.contains(database)) {
result.add(database);
}
}
return result;
}
/**
* 获取目标数据库列表
*
* @return 列表
*/
private List<String> getDatabaseTo() {
List<String> result = new ArrayList<>();
for(InfluxCqDict influxCqDict : influxCqDictList) {
String database = influxCqDict.getToDatabase();
if (!result.contains(database)) {
result.add(database);
}
}
return result;
}
/**
* 重新创建database
*/
private void recreateDatabase() {
List<String> dbList = getDatabaseTo();
for(String database : dbList) {
influxUtils.dropDatabase(database);
influxUtils.createDatabase(database);
influxUtils.createRetentionPolicy(database);
}
}
/**
* 删除所有连续查询
*/
private void dropAllCp() {
JSONArray jsonArray = influxUtils.getContinuousQueries();
List<String> dbList = getDatabaseFrom();
for(String database : dbList) {
for (int i = 0; i < jsonArray.size(); i++) {
JSONObject jsonObject = jsonArray.getJSONObject(i);
influxUtils.dropContinuousQuery(jsonObject.getString("name"), database);
}
}
}
/**
* 创建所有连续查询
*/
private void createAllCp() {
for(InfluxCqDict influxCqDict : influxCqDictList) {
String createCqStr = makeOneCqStr(influxCqDict);
influxUtils.createContinuousQuery(createCqStr);
}
}
/**
* 生成单个连续查询语句
*
* @param influxCqDict InfluxCqDict
* @return 连续查询语句
*/
private String makeOneCqStr(InfluxCqDict influxCqDict) {
String every = makeEvery(influxCqDict);
String fields = makeFields(influxCqDict);
String groupBy = makeGroupBy(influxCqDict);
JSONObject paramJson = new JSONObject();
paramJson.put("cqName", influxCqDict.getCqName());
paramJson.put("onDatabase", influxCqDict.getFromDatabase());
paramJson.put("every", every);
paramJson.put("forInterval", influxCqDict.getForInterval());
paramJson.put("fields", fields);
paramJson.put("toDatabase", influxCqDict.getToDatabase());
paramJson.put("toRetentionPolicy", influxCqDict.getToRetentionPolicy());
paramJson.put("toMeasurement", influxCqDict.getToMeasurement());
paramJson.put("fromDatabase", influxCqDict.getFromDatabase());
paramJson.put("fromRetentionPolicy", influxCqDict.getFromRetentionPolicy());
paramJson.put("fromMeasurement", influxCqDict.getFromMeasurement());
paramJson.put("groupBy", groupBy);
paramJson.put("fill", influxCqDict.getFill());
return InfluxUtils.formatSql(InfluxSql.CREATE_CONTINUOUS_QUERY, paramJson);
}
/**
* 生成语句Field字段
*
* @param influxCqDict InfluxCqDict
* @return Field字段
*/
private String makeFields(InfluxCqDict influxCqDict) {
String[] fields = influxCqDict.getField().split(",");
String[] funcs = influxCqDict.getFunc().split(",");
StringBuilder sb = new StringBuilder();
for (String field : fields) {
for (String func : funcs) {
sb.append(func).append("(").append(field).append("),");
}
}
return sb.substring(0, sb.length() - 1);
}
/**
* 生成GroupBy字段
*
* @param influxCqDict InfluxCqDict
* @return GroupBy字段
*/
private String makeGroupBy(InfluxCqDict influxCqDict) {
List<String> tagKeys = influxUtils.getMeasurementTagKeys(
influxCqDict.getFromDatabase(), influxCqDict.getFromMeasurement());
StringBuilder sb = new StringBuilder();
sb.append("time(").append(influxCqDict.getGroupByTime()).append(")");
if (tagKeys.size() > 0) {
sb.append(",");
}
for (String tagKey : tagKeys) {
sb.append(tagKey).append(",");
}
return sb.substring(0, sb.length() - 1);
}
/**
* 生成EVERY字段
*
* @param influxCqDict InfluxCqDict
* @return EVERY字段
*/
private String makeEvery(InfluxCqDict influxCqDict) {
String every = influxCqDict.getEvery();
if (every != null && !every.isEmpty()) {
return " EVERY " + every;
}
return "";
}
}
4、Domain类
package com.rexel.backstage.project.tool.init.domain;
import lombok.Data;
/**
* InfluxDB连续查询domain类
*
* @author admin
* @date 2020-07-30
*/
@Data
public class InfluxCqDict {
/** 连续查询的名称 */
private String cqName;
/** 源数据库 */
private String fromDatabase;
/** 源存储策略 */
private String fromRetentionPolicy;
/** 源表名 */
private String fromMeasurement;
/** 目标数据库 */
private String toDatabase;
/** 目标存储策略 */
private String toRetentionPolicy;
/** 目标表名 */
private String toMeasurement;
/** 时间间隔 */
private String forInterval;
/** 执行频率 */
private String every;
/** 查询字段 */
private String field;
/** 聚合功能 */
private String func;
/** GROUP BY指定的time duration */
private String groupByTime;
/** 空白填充方式 */
private String fill;
}
5、Mapper类
package com.rexel.backstage.project.tool.init.mapper;
import com.rexel.backstage.project.tool.init.domain.InfluxCqDict;
import java.util.List;
import org.springframework.stereotype.Repository;
/**
* InfluxDB连续查询Mapper接口
*
* @author admin
* @date 2020-07-30
*/
@Repository
public interface InfluxCqDictMapper {
/**
* 查询InfluxDB连续查询
*
* @return InfluxDB连续查询列表
*/
List<InfluxCqDict> selectInfluxCqDictList();
/**
* 新增InfluxDB连续查询
*
* @param influxCqDict InfluxDB连续查询
* @return 结果
*/
int insertInfluxCqDict(InfluxCqDict influxCqDict);
/**
* 删除InfluxDB连续查询
*
* @param database 源数据库名
* @return 结果
*/
int deleteInfluxCqDictByDatabase(String database);
}
6、MyBatis的XML文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE mapper
PUBLIC "-//mybatis.org//DTD Mapper 3.0//EN"
"http://mybatis.org/dtd/mybatis-3-mapper.dtd">
<mapper namespace="com.rexel.backstage.project.tool.init.mapper.InfluxCqDictMapper">
<resultMap type="com.rexel.backstage.project.tool.init.domain.InfluxCqDict" id="InfluxCqDictResult">
<result property="cqName" column="cq_name"/>
<result property="fromDatabase" column="from_database"/>
<result property="fromRetentionPolicy" column="from_retention_policy"/>
<result property="fromMeasurement" column="from_measurement"/>
<result property="toDatabase" column="to_database"/>
<result property="toRetentionPolicy" column="to_retention_policy"/>
<result property="toMeasurement" column="to_measurement"/>
<result property="forInterval" column="for_interval"/>
<result property="every" column="every"/>
<result property="field" column="field"/>
<result property="func" column="func"/>
<result property="groupByTime" column="group_by_time"/>
<result property="fill" column="fill"/>
</resultMap>
<sql id="selectInfluxCqDictVo">
select cq_name, from_database, from_retention_policy, from_measurement, to_database, to_retention_policy, to_measurement, for_interval, every, field, func, group_by_time, fill from influx_cq_dict
</sql>
<select id="selectInfluxCqDictList" resultMap="InfluxCqDictResult">
<include refid="selectInfluxCqDictVo"/>
where is_delete = 0;
</select>
<insert id="insertInfluxCqDict" parameterType="com.rexel.backstage.project.tool.init.domain.InfluxCqDict">
insert into influx_cq_dict
<trim prefix="(" suffix=")" suffixOverrides=",">
<if test="cqName != null and cpName != ''">cq_name,</if>
<if test="fromDatabase != null and fromDatabase != ''">from_database,</if>
<if test="fromRetentionPolicy != null and fromRetentionPolicy != ''">from_retention_policy,</if>
<if test="fromMeasurement != null and fromMeasurement != ''">from_measurement,</if>
<if test="toDatabase != null and toDatabase != ''">to_database,</if>
<if test="toRetentionPolicy != null and toRetentionPolicy != ''">to_retention_policy,</if>
<if test="toMeasurement != null and toMeasurement != ''">to_measurement,</if>
<if test="for != null and for != ''">for,</if>
<if test="every != null and every != ''">every,</if>
<if test="field != null and field != ''">field,</if>
<if test="func != null and func != ''">func,</if>
<if test="groupByTime != null and groupByTime != ''">group_by_time,</if>
<if test="fill != null and fill != ''">fill,</if>
</trim>
<trim prefix="values (" suffix=")" suffixOverrides=",">
<if test="cqName != null and cqName != ''">#{qpName},</if>
<if test="fromDatabase != null and fromDatabase != ''">#{fromDatabase},</if>
<if test="fromRetentionPolicy != null and fromRetentionPolicy != ''">#{fromRetentionPolicy},</if>
<if test="fromMeasurement != null and fromMeasurement != ''">#{fromMeasurement},</if>
<if test="toDatabase != null and toDatabase != ''">#{toDatabase},</if>
<if test="toRetentionPolicy != null and toRetentionPolicy != ''">#{toRetentionPolicy},</if>
<if test="toMeasurement != null and toMeasurement != ''">#{toMeasurement},</if>
<if test="for != null and for != ''">#{for},</if>
<if test="every != null and every != ''">#{every},</if>
<if test="field != null and field != ''">#{field},</if>
<if test="func != null and func != ''">#{func},</if>
<if test="groupByTime != null and groupByTime != ''">#{groupByTime},</if>
<if test="fill != null and fill != ''">#{fill},</if>
</trim>
</insert>
<delete id="deleteInfluxCqDictByDatabase" parameterType="String">
delete from influx_cq_dict where from_database = #{fromDatabase}
</delete>
</mapper>
7、InfluxUtils类
package com.rexel.influxdb;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import com.rexel.influxdb.constans.InfluxSql;
import com.rexel.influxdb.query.QueryDeviceMeta;
import com.rexel.influxdb.query.QueryDeviceMetaResult;
import com.rexel.influxdb.query.QueryProductMeta;
import com.rexel.influxdb.query.QueryProductMetaResult;
import com.rexel.utils.times.TimeUtils;
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Set;
import lombok.extern.slf4j.Slf4j;
import okhttp3.OkHttpClient;
import org.influxdb.InfluxDB;
import org.influxdb.InfluxDBFactory;
import java.io.IOException;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
import org.influxdb.dto.Query;
import org.influxdb.dto.QueryResult;
import org.influxdb.dto.QueryResult.Result;
import org.influxdb.dto.QueryResult.Series;
/**
* @ClassName InfluxUtils
* @Description InfluxDB共通类
* @Author: chunhui.qu
* @Date: 2020/6/26
*/
@Slf4j
public class InfluxUtils {
private InfluxDB influxDb;
private volatile Map<String, JSONObject> productMetaData = new HashMap<>();
private volatile Map<String, JSONObject> deviceMetaData = new HashMap<>();
/**
* 构造函数
*/
private InfluxUtils() {
// do nothing
}
/**
* 单例模式
*/
private static class SingletonInstance {
private static final InfluxUtils INSTANCE = new InfluxUtils();
}
/**
* 获取对象句柄
*/
public static InfluxUtils getInstance() {
return SingletonInstance.INSTANCE;
}
/**
* 创建InfluxDB连接
*
* @return InfluxDB
*/
public InfluxDB connect() {
if (influxDb != null) {
return influxDb;
}
Properties properties = getProperties();
String url = properties.getProperty("influx.url");
String username = properties.getProperty("influx.username");
String password = properties.getProperty("influx.password");
log.info("influx.url=" + url);
log.info("influx.username=" + username);
log.info("influx.password=" + password);
OkHttpClient.Builder client =
new OkHttpClient.Builder().readTimeout(100, TimeUnit.SECONDS);
influxDb = InfluxDBFactory.connect(url, username, password, client);
return influxDb;
}
/**
* 创建database
*
* @param database database
*/
public void createDatabase(String database) {
connect();
JSONObject params = new JSONObject();
params.put("database", database);
String sql = formatSql(InfluxSql.CREATE_DATA_BASE, params);
QueryResult queryResult = influxDb.query(new Query(sql));
log.info(queryResult.toString());
}
/**
* 删除database
*
* @param database database
*/
public void dropDatabase(String database) {
connect();
JSONObject params = new JSONObject();
params.put("database", database);
String sql = formatSql(InfluxSql.DROP_DATA_BASE, params);
QueryResult queryResult = influxDb.query(new Query(sql));
log.info(queryResult.toString());
}
/**
* 创建数据保存策略
*
* @param database database
*/
public void createRetentionPolicy(String database) {
connect();
JSONObject params = new JSONObject();
params.put("database", database);
String sql = formatSql(InfluxSql.CREATE_RETENTION_POLICY, params);
QueryResult queryResult = influxDb.query(new Query(sql));
log.info(queryResult.toString());
}
/**
* 查询连续查询
*
* @return 结果
*/
public JSONArray getContinuousQueries() {
connect();
QueryResult queryResult = influxDb.query(new Query(InfluxSql.SHOW_CONTINUOUS_QUERIES));
return convert(queryResult, false);
}
/**
* 删除指定连续查询
*
* @param cpName 连续查询名称
* @param database database
*/
public void dropContinuousQuery(String cpName, String database) {
connect();
JSONObject params = new JSONObject();
params.put("cpName", cpName);
params.put("database", database);
String sql = formatSql(InfluxSql.DROP_CONTINUOUS_QUERY, params);
QueryResult queryResult = influxDb.query(new Query(sql));
log.info(queryResult.toString());
}
/**
* 创建连续查询
*
* @param createCqStr 创建语句
*/
public void createContinuousQuery(String createCqStr) {
connect();
QueryResult queryResult = influxDb.query(new Query(createCqStr));
log.info(queryResult.toString());
}
/**
* 查询指定measurement的tag key
*
* @param database database
* @param measurement measurement
* @return tag key列表
*/
public List<String> getMeasurementTagKeys(String database, String measurement) {
connect();
JSONObject params = new JSONObject();
params.put("database", database);
params.put("measurement", measurement);
String sql = formatSql(InfluxSql.SHOW_TAG_KEYS, params);
QueryResult queryResult = influxDb.query(new Query(sql));
JSONArray jsonArray = convert(queryResult, false);
List<String> tagKeys = new ArrayList<>();
for (int i = 0; i < jsonArray.size(); i++) {
JSONObject jsonObject = jsonArray.getJSONObject(i);
String tagKey = jsonObject.getString("tagKey");
if (!tagKeys.contains(tagKey)) {
tagKeys.add(tagKey);
}
}
return tagKeys;
}
/**
* InfluxQL格式化
*
* @param sql 原始SQL
* @param params 参数
* @return 格式化结果
*/
public static String formatSql(String sql, JSONObject params) {
Set<Entry<String, Object>> set = params.entrySet();
for (Entry<String, Object> entry : set) {
String param = "{" + entry.getKey() + "}";
sql = sql.replace(param, String.valueOf(entry.getValue()));
}
return sql;
}
/**
* 转换QueryResult
*
* @param queryResult QueryResult
* @return JSONArray
*/
public static JSONArray convert(QueryResult queryResult, boolean removeTime) {
JSONArray jsonArray = new JSONArray();
List<Result> results = queryResult.getResults();
for (Result result : results) {
List<Series> seriesList = result.getSeries();
if (seriesList == null) {
continue;
}
for (Series series : seriesList) {
List<List<Object>> valuesList = series.getValues();
if (valuesList == null) {
continue;
}
for (List<Object> values : valuesList) {
List<String> columns = series.getColumns();
JSONObject jsonObject = new JSONObject();
for (int i = 0; i < columns.size(); i++) {
String column = columns.get(i);
if ("time".equals(column)) {
if (!removeTime) {
jsonObject.put(column, TimeUtils.time8ToDateString(values.get(i).toString()));
}
} else {
Object value = values.get(i);
if (value != null) {
jsonObject.put(column, value);
}
}
}
jsonArray.add(jsonObject);
}
}
}
return jsonArray;
}
/**
* 读取资源文件
*
* @return Properties
*/
private Properties getProperties() {
Properties props = new Properties();
try(InputStream is = InfluxUtils.class
.getClassLoader().getResourceAsStream("application.properties")) {
props.load(is);
} catch (IOException e) {
log.error("[读取资源文件异常:]",e);
}
return props;
}
}
8、接口地址
http://localhost:9200/rexel/tool/influx/continuousQuery/refresh?type=init http://localhost:9200/rexel/tool/influx/continuousQuery/refresh?type=drop http://localhost:9200/rexel/tool/influx/continuousQuery/refresh?type=create
9、实现结果

==相关配置==
在整个过程中有几个相关的配置需要注意一下:
1、coordinator
query-timeout = "0s"
不要设置查询超时时间(因为首次查询90天的数据,是很有可能超时的,后面按需再设置)

2、continuous_queries
enabled = true:开启连续查询
log-enabled = true:开启连续查询日志
query-stats-enabled = true:将使用有关连续查询的运行时间及其持续时间的信息来写入数据_internal

==遇到的坑==
【坑1】
发生时间:2020年7月31日
问题描述:查看连续查询的日志((/var/log/messages)),存在error=timeout的问题,

我在配置文件中已经把query-timeout设置为0了,依然出现这个问题。暂时还不知道原因。。。。很是惆怅。
2020年8月3日 追记:
未能在组件本身上找到原因及解决办法,尝试着将一个大的连续查询拆解为多个小的连续查询之后,问题得以解决。
拆解前:
CREATE CONTINUOUS QUERY cq_device_data_up_sum_6h ON rexel_online RESAMPLE EVERY 1d FOR 1d BEGIN SELECT first(*), last(*), max(*), mean(*), median(*), min(*), spread(*), sum(*) INTO rexel_online_analysis.one_year.device_data_up_sum_6h FROM rexel_online.one_year.device_data_up GROUP BY time(6h), deviceName, event, productKey fill(none) END
拆解后:
CREATE CONTINUOUS QUERY cq_device_data_up_sum_6h ON rexel_online RESAMPLE EVERY 1d FOR 1d BEGIN SELECT sum(*) INTO rexel_online_analysis.one_year.device_data_up_sum_6h FROM rexel_online.one_year.device_data_up GROUP BY time(6h), deviceName, event, productKey fill(none) END
--END--
