zoukankan      html  css  js  c++  java
  • UESTC 1717 Journey(DFS+LCA)(Sichuan State Programming Contest 2012)

    Description

    Bob has traveled to byteland, he find the N cities in byteland formed a tree structure, a tree structure is very special structure, there is exactly one path connecting each pair of nodes, and a tree with N nodes has N - 1 edges.

    As a traveler, Bob wants to journey between those N cities, and he know the time each road will cost. he advises the king of byteland building a new road to save time, and then, a new road was built. Now Bob has Q journey plan, give you the start city and destination city, please tell Bob how many time is saved by add a road if he always choose the shortest path. Note that if it's better not journey from the new roads,
    the answer is 0.

    Input

    First line of the input is a single integer T(1 <= T <= 20), indicating there are T test cases.

    For each test case, the first will line contain two integers N(2 <= N <= 10^5) and Q(1 <= Q <= 10^5), indicating the number of cities in byteland and the journey plans. Then N line followed, each line will contain three integer x, y(1 <= x,y <= N) and z(1 <= z <= 1000) indicating there is a road cost z time connect the x-th city and the y-th city, the first N - 1 roads will form a tree structure, indicating the original roads, and the N-th line is the road built after Bob advised the king. Then Q line followed, each line will contain two integer x and y(1 <= x,y <= N), indicating there is a journey plan from the x-th city to y-th city.

    Output

    For each case, you should first output "Case #t:" in a single line, where t indicating the case number between 1 and T, then Q lines followed, the i-th line contains one integer indicating the time could saved in i-th journey plan.

    题目大意:给一棵树T,每条边都有一个权值,然后又一条新增边,多次询问:从点x到点y在T上走的最短距离,在加上那条新增边之后,最短距离可以减少多少。

    思路:任意确定一个根root,DFS计算每个点到根的距离dis[],然后每两点间的最短距离为dis[x]+dis[y]-2*dis[LCA(x,y)]。若新加入一条边u--v,那么如果我们必须经过u--v,那么从x到y的最短距离就为dis(x,u)+dis(u,v)+dis(v,y)或dis(x,v)+dis(v,u)+dis(u,y)。这样在线处理答案就行。

    PS:至于求LCA的方法可以参考2007年郭华阳的论文《RMQ&LCA问题》,RMQ可以用ST算法,至于那个O(n)的±1RMQ有空再写把……

      1 #include <cstdio>
      2 #include <cstring>
      3 #include <algorithm>
      4 using namespace std;
      5 
      6 const int MAXN = 100010;
      7 const int MAXM = MAXN * 2;
      8 
      9 int head[MAXN];
     10 int next[MAXM], to[MAXM], cost[MAXM];
     11 int ecnt, root;
     12 
     13 void init() {
     14     ecnt = 1;
     15     memset(head, 0, sizeof(head));
     16 }
     17 
     18 void addEdge(int u, int v, int c) {
     19     to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
     20     to[ecnt] = u; cost[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
     21 }
     22 
     23 int dis[MAXN];
     24 
     25 void dfs(int f, int u, int di) {
     26     dis[u] = di;
     27     for(int p = head[u]; p; p = next[p]) {
     28         if(to[p] == f) continue;
     29         dfs(u, to[p], di + cost[p]);
     30     }
     31 }
     32 
     33 int RMQ[2*MAXN], mm[2*MAXN], best[20][2*MAXN];
     34 
     35 void initMM() {
     36     mm[0] = -1;
     37     for(int i = 1; i <= MAXN * 2 - 1; ++i)
     38        mm[i] = ((i&(i-1)) == 0) ? mm[i-1] + 1 : mm[i-1];
     39 }
     40 
     41 void initRMQ(int n) {
     42     int i, j, a, b;
     43     for(i = 1; i <= n; ++i) best[0][i] = i;
     44     for(i = 1; i <= mm[n]; ++i) {
     45         for(j = 1; j <= n + 1 - (1 << i); ++j) {
     46           a = best[i - 1][j];
     47           b = best[i - 1][j + (1 << (i - 1))];
     48           if(RMQ[a] < RMQ[b]) best[i][j] = a;
     49           else best[i][j] = b;
     50         }
     51     }
     52 }
     53 
     54 int askRMQ(int a,int b) {
     55     int t;
     56     t = mm[b - a + 1]; b -= (1 << t)-1;
     57     a = best[t][a]; b = best[t][b];
     58     return RMQ[a] < RMQ[b] ? a : b;
     59 }
     60 
     61 int dfs_clock, num[2*MAXN], pos[MAXN];//LCA
     62 
     63 void dfs_LCA(int f, int u, int dep) {
     64     pos[u] = ++dfs_clock;
     65     RMQ[dfs_clock] = dep; num[dfs_clock] = u;
     66     for(int p = head[u]; p; p = next[p]) {
     67         if(to[p] == f) continue;
     68         dfs_LCA(u, to[p], dep + 1);
     69         ++dfs_clock;
     70         RMQ[dfs_clock] = dep; num[dfs_clock] = u;
     71     }
     72 }
     73 
     74 int LCA(int u, int v) {
     75     if(pos[u] > pos[v]) swap(u, v);
     76     return num[askRMQ(pos[u], pos[v])];
     77 }
     78 
     79 void initLCA(int n) {
     80     dfs_clock = 0;
     81     dfs_LCA(0, root, 0);
     82     initRMQ(dfs_clock);
     83 }
     84 
     85 int mindis(int x, int y) {
     86     return dis[x] + dis[y] - 2 * dis[LCA(x, y)];
     87 }
     88 
     89 int main() {
     90     int T, n, Q;
     91     int x, y, z, p;
     92     int u, v;
     93     initMM();
     94     scanf("%d", &T);
     95     for(int t = 1; t <= T; ++t) {
     96         printf("Case #%d:
    ", t);
     97         scanf("%d%d", &n, &Q);
     98         init();
     99         for(int i = 0; i < n - 1; ++i) {
    100             scanf("%d%d%d", &x, &y, &z);
    101             addEdge(x, y, z);
    102         }
    103         scanf("%d%d%d", &x, &y, &z);
    104         root = x;
    105         dis[root] = 0;
    106         for(p = head[root]; p; p = next[p]) dfs(root, to[p], cost[p]);
    107         initLCA(n);
    108         while(Q--) {
    109             scanf("%d%d", &u, &v);
    110             int ans1 = mindis(u, v);
    111             int ans2 = min(mindis(u, x) + mindis(y, v), mindis(u, y) + mindis(x, v)) + z;
    112             if(ans1 > ans2) printf("%d
    ", ans1 - ans2);
    113             else printf("0
    ");
    114         }
    115     }
    116 }
    View Code

      

  • 相关阅读:
    常见网络攻击手段原理分析
    admins.py总结比较,转
    django的表与表之间的关系详细讲解
    django中的@login_required
    安装指定版本的第三方库
    在django中使用logging
    django的manytomany总结
    manyToManyField理解和用法
    django的多对一,一对一,多对多关系
    python 的os的总结
  • 原文地址:https://www.cnblogs.com/oyking/p/3220504.html
Copyright © 2011-2022 走看看