zoukankan      html  css  js  c++  java
  • POJ 1269 Intersecting Lines(直线求交点)

    Description

    We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line because they are on top of one another (i.e. they are the same line), 3) intersect in a point. In this problem you will use your algebraic knowledge to create a program that determines how and where two lines intersect. 
    Your program will repeatedly read in four points that define two lines in the x-y plane and determine how and where the lines intersect. All numbers required by this problem will be reasonable, say between -1000 and 1000. 

    Input

    The first line contains an integer N between 1 and 10 describing how many pairs of lines are represented. The next N lines will each contain eight integers. These integers represent the coordinates of four points on the plane in the order x1y1x2y2x3y3x4y4. Thus each of these input lines represents two lines on the plane: the line through (x1,y1) and (x2,y2) and the line through (x3,y3) and (x4,y4). The point (x1,y1) is always distinct from (x2,y2). Likewise with (x3,y3) and (x4,y4).

    Output

    There should be N+2 lines of output. The first line of output should read INTERSECTING LINES OUTPUT. There will then be one line of output for each pair of planar lines represented by a line of input, describing how the lines intersect: none, line, or point. If the intersection is a point then your program should output the x and y coordinates of the point, correct to two decimal places. The final line of output should read "END OF OUTPUT".
     
    题目大意:以两点式给出直线,求交点。
    思路:继续做模板,虽然不知道它什么原理。
     
    代码(0MS):
      1 #include <cstdio>
      2 #include <cstring>
      3 #include <iostream>
      4 #include <algorithm>
      5 #include <cmath>
      6 using namespace std;
      7 
      8 const double EPS = 1e-8;
      9 const double PI = acos(-1.0);//3.14159265358979323846
     10 
     11 inline int sgn(double x) {
     12     return (x > EPS) - (x < -EPS);
     13 }
     14 
     15 struct Point {
     16     double x, y;
     17     Point() {}
     18     Point(double x, double y): x(x), y(y) {}
     19     void read() {
     20         scanf("%lf%lf", &x, &y);
     21     }
     22     bool operator < (const Point &rhs) const {
     23         if(y != rhs.y) return y < rhs.y;
     24         return x < rhs.x;
     25     }
     26     Point operator + (const Point &rhs) const {
     27         return Point(x + rhs.x, y + rhs.y);
     28     }
     29     Point operator - (const Point &rhs) const {
     30         return Point(x - rhs.x, y - rhs.y);
     31     }
     32     Point operator * (const int &b) const {
     33         return Point(x * b, y * b);
     34     }
     35     Point operator / (const int &b) const {
     36         return Point(x / b, y / b);
     37     }
     38     double length() const {
     39         return sqrt(x * x + y * y);
     40     }
     41     Point unit() const {
     42         return *this / length();
     43     }
     44 };
     45 typedef Point Vector;
     46 
     47 double dist(const Point &a, const Point &b) {
     48     return (a - b).length();
     49 }
     50 
     51 double cross(const Point &a, const Point &b) {
     52     return a.x * b.y - a.y * b.x;
     53 }
     54 //ret >= 0 means turn left
     55 double cross(const Point &sp, const Point &ed, const Point &op) {
     56     return sgn(cross(sp - op, ed - op));
     57 }
     58 
     59 struct Seg {
     60     Point st, ed;
     61     Seg() {}
     62     Seg(Point st, Point ed): st(st), ed(ed) {}
     63     void read() {
     64         st.read(); ed.read();
     65     }
     66 };
     67 typedef Seg Line;
     68 
     69 bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
     70     return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
     71         (max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
     72         (max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
     73         (max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
     74         (cross(s2, e1, s1) * cross(e1, e2, s1) >= 0) &&
     75         (cross(s1, e2, s2) * cross(e2, e1, s2) >= 0);
     76 }
     77 
     78 bool isIntersected(const Seg &a, const Seg &b) {
     79     return isIntersected(a.st, a.ed, b.st, b.ed);
     80 }
     81 
     82 bool isParallel(const Seg &a, const Seg &b) {
     83     return sgn(cross(a.ed - a.st, b.ed - b.st)) == 0;
     84 }
     85 
     86 //return Ax + By + C =0 's A, B, C
     87 void Coefficient(const Line &L, double &A, double &B, double &C) {
     88     A = L.ed.y - L.st.y;
     89     B = L.st.x - L.ed.x;
     90     C = L.ed.x * L.st.y - L.st.x * L.ed.y;
     91 }
     92 
     93 Point intersection(const Line &a, const Line &b) {
     94     double A1, B1, C1;
     95     double A2, B2, C2;
     96     Coefficient(a, A1, B1, C1);
     97     Coefficient(b, A2, B2, C2);
     98     Point I;
     99     I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
    100     I.y =   (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
    101     return I;
    102 }
    103 
    104 bool isEqual(const Line &a, const Line &b) {
    105     double A1, B1, C1;
    106     double A2, B2, C2;
    107     Coefficient(a, A1, B1, C1);
    108     Coefficient(b, A2, B2, C2);
    109     return sgn(A1 * B2 - A2 * B1) == 0 && sgn(A1 * C2 - A2 * C1) == 0 && sgn(B1 * C2 - B2 * C1) == 0;
    110 }
    111 
    112 /*******************************************************************************************/
    113 
    114 
    115 Line a, b;
    116 int n;
    117 
    118 int main() {
    119     scanf("%d", &n);
    120     puts("INTERSECTING LINES OUTPUT");
    121     for(int i = 0; i < n; ++i) {
    122         a.read(), b.read();
    123         if(isParallel(a, b)) {
    124             if(isEqual(a, b)) puts("LINE");
    125             else puts("NONE");
    126         }
    127         else {
    128             Point ans = intersection(a, b);
    129             printf("POINT %.2f %.2f
    ", ans.x, ans.y);
    130         }
    131     }
    132     puts("END OF OUTPUT");
    133 }
    View Code
  • 相关阅读:
    ARM Linux 3.x的设备树(Device Tree)
    ubuntu 14.04 编译内核出现unable to locate package ncurses-devel 问题的解决
    Device Tree Usage( DTS文件语法)
    Ubuntu 14.04中gedit打开文件出现中文乱码问题
    Jenkins中集成jmeter-maven插件
    Linux(centos6.5)下安装jenkins
    IM系统架构设计之浅见
    一些常用软件的网络端口协议分类介绍
    Jenkins执行批处理文件失败
    八大持续集成工具
  • 原文地址:https://www.cnblogs.com/oyking/p/3415057.html
Copyright © 2011-2022 走看看