zoukankan      html  css  js  c++  java
  • POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    题目大意:给k个线性同余方程,求这些方程的公共解。

    附思路:http://blog.csdn.net/orpinex/article/details/6972654

    思路:考虑两个方程的情况

    ans = r1(mod a1)
    ans = r2(mod a2)①
    存在k1使得ans = r1 + k1 * a1
    把ans代入①得:r1 + k1 * a1 = r2(mod a2)
    k1 * a1 = r2 - r1(mod a2)
    存在k2使得k1 * a1 - k2 * a2 = r2 - r1
    利用拓展欧几里得求出k1(为了得到最小的非负整数k1,可以让k1 = k1 mod (a2/gcd(a1, a2)))

    那么令ans = r1 + k1 * a1

    对于多个方程的情况,两个两个地联立解,new_r = ans = r1 + k1 * a1, new_a = lcm(a1, a2)

    解析:

    关于为了让k1最小要k1 = k1 mod (a2/gcd(a1, a2))。令d = gcd(a1, a2),a1'= a1 / d,a2' = a2 / d ,r' = (r2 - r1) / d,对方程k1 * a1 - k2 * a2 = r2 - r1,两边同时除以d得k1 * a1' - k2 * a2' = r',即k1 * a1' = r' (mod a2'),对于任意解k1 = x',有通解x = x' + a2' = x' + a2 / gcd(a1, a2)。则最小的k1 = (x' + a2 / gcd(a1, a2)) mod (a2 / gcd(a1, a2) = x' mod (a2 / gcd(a1, a2))

    关于new_a = lcm(a1, a2)。考虑方程x * a = y * b,两边同时除以gcd(a, b),得到x * a' = y * b',x / y = b' / a',那么有x = kb',y = ka',k∈Z。那么使得方程x * a = y * b成立的x * a = k * b' * a = k * lcm(a, b)。容易想象,p + ax = q + by的每个合理的p + ax的差为lcm(a, b)。即对于方程r1(mod a1) = r2(mod a2)的解也是隔lcm(a1, a2)就出现一个解,即new_a = lcm(a1, a2)。 

    代码(16MS):

     1 #include <cstdio>
     2 #include <iostream>
     3 #include <algorithm>
     4 #include <cstring>
     5 using namespace std;
     6 typedef long long LL;
     7 
     8 void exgcd(LL a, LL b, LL &d, LL &x, LL &y) {
     9     if(!b) d = a, x = 1, y = 0;
    10     else {
    11         exgcd(b, a % b, d, y, x);
    12         y -= x * (a / b);
    13     }
    14 }
    15 
    16 int main() {
    17     LL k, a1, a2, r1, r2;
    18     while(scanf("%I64d", &k) != EOF) {
    19         bool flag = true;
    20         scanf("%I64d%I64d", &a1, &r1);
    21         for(int i = 1; i < k; ++i) {
    22             scanf("%I64d%I64d", &a2, &r2);
    23             if(!flag) continue;
    24             LL r = r2 - r1, d, k1, k2;
    25             exgcd(a1, a2, d, k1, k2);
    26             if(r % d) flag = false;
    27             LL t = a2 / d;
    28             k1 = (r / d * k1 % t + t) % t;
    29             r1 = r1 + a1 * k1;
    30             a1 = a1 / d * a2;
    31         }
    32         printf("%I64d
    ", flag ? r1 : -1);
    33     }
    34 }
    View Code
  • 相关阅读:
    说说Cookie和Session
    说说SQL Server的数据类型
    Java访问权限控制
    数据库-- 触发器
    关于jni编译32位、64位动态库(Android.mk和Application.mk文件)
    Android中的 init.rc文件简介
    Android系统属性简介
    Android Support 包知识
    Android窗口机制分析与UI管理系统
    Android界面架构(Activity,PhoneWiondow,DecorView)简介
  • 原文地址:https://www.cnblogs.com/oyking/p/3546757.html
Copyright © 2011-2022 走看看