zoukankan      html  css  js  c++  java
  • HDU 4512 吉哥系列故事——完美队形(LCIS)

    Problem Description
      吉哥这几天对队形比较感兴趣。
      有一天,有n个人按顺序站在他的面前,他们的身高分别是h[1], h[2] ... h[n],吉哥希望从中挑出一些人,让这些人形成一个新的队形,新的队形若满足以下三点要求,则称之为完美队形:
      
      1、挑出的人保持他们在原队形的相对顺序不变;
      2、左右对称,假设有m个人形成新的队形,则第1个人和第m个人身高相同,第2个人和第m-1个人身高相同,依此类推,当然,如果m是奇数,中间那个人可以任意;
      3、从左到中间那个人,身高需保证递增,如果用H表示新队形的高度,则H[1] < H[2] < H[3] .... < H[mid]。

      现在吉哥想知道:最多能选出多少人组成完美队形?
     
    Input
      第一行输入T,表示总共有T组数据(T <= 20);
      每组数据先输入原先队形的人数n(1<=n <= 200),接下来一行输入n个整数,表示按顺序从左到右原先队形位置站的人的身高(50 <= h <= 250,不排除特别矮小和高大的)。
     
    Output
      请输出能组成完美队形的最多人数,每组数据输出占一行。
     
    题目大意:中文题。。。
    思路:设原串为a,反过来变成串b,求a和b的LCIS(最长公共上升子序列)。然后求出以每一个位置为中心,向两边拓展可以得到的最长公共下降子序列。答案就出来了。
    LCIS的时间复杂度为O(n^2),总复杂度为O(n^2)。
     
    代码(0MS):
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <algorithm>
     4 #include <cstring>
     5 using namespace std;
     6 
     7 const int MAXN = 210;
     8 
     9 int dp[MAXN][MAXN];
    10 int p[MAXN];
    11 int n, T;
    12 
    13 int main() {
    14     scanf("%d", &T);
    15     while(T--) {
    16         scanf("%d", &n);
    17         for(int i = 1; i <= n; ++i) scanf("%d", &p[i]);
    18         for(int i = 0; i <= n; ++i)
    19             for(int j = 0; j <= n; ++j) dp[i][j] = 0;
    20         for(int i = 1; i <= n; ++i) {
    21             int t = 0;
    22             for(int j = 1; j <= n; ++j) {
    23                 dp[i][j] = dp[i - 1][j];
    24                 if(p[i] > p[n - j + 1]) t = max(t, dp[i][j]);
    25                 if(p[i] == p[n - j + 1]) dp[i][j] = t + 1;
    26             }
    27         }
    28         for(int i = 1; i <= n; ++i)
    29             for(int j = 1; j <= n; ++j) dp[i][j] = max(dp[i][j], dp[i][j - 1]);
    30         int ans = 0;
    31         for(int i = 1; i <= n; ++i)
    32             ans = max(ans, 2 * dp[i][n - i + 1] - 1);
    33         for(int i = 1; i < n; ++i)
    34             ans = max(ans, 2 * dp[i][n - i]);
    35         printf("%d
    ", ans);
    36     }
    37 }
    View Code
  • 相关阅读:
    winform 异步更新ui
    定时器的写法 winform
    延迟加载
    使用VS分析程序性能
    win7 C/C++,QT安装环境总结
    论文总结
    天舟一号
    硬盘 SMART 检测参数详解[转]
    碧桃花
    在C的头文件中定义的结构体,如何在cpp文件中引用
  • 原文地址:https://www.cnblogs.com/oyking/p/3704086.html
Copyright © 2011-2022 走看看