zoukankan      html  css  js  c++  java
  • HDU 3037 Saving Beans(Lucas定理模板题)

    Problem Description
    Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

    Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
     
    Input
    The first line contains one integer T, means the number of cases.

    Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
     
    Output
    You should output the answer modulo p.
     
    题目大意:求C(n + m, m) % p
    思路:http://blog.csdn.net/acm_cxlove/article/details/7844973
     
    代码(1234MS):
     1 #include <cstdio>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <iostream>
     5 using namespace std;
     6 typedef long long LL;
     7 
     8 const int MAXN = 100010;
     9 
    10 int fac[MAXN];
    11 int n, m, p, T;
    12 
    13 int power(int x, int p, int mod) {
    14     int res = 1;
    15     while(p) {
    16         if(p & 1) res = (LL)res * x % mod;
    17         x = (LL)x * x % mod;
    18         p >>= 1;
    19     }
    20     return res;
    21 }
    22 
    23 void init_fac(int p) {
    24     fac[0] = 1;
    25     for(int i = 1; i <= p; ++i)
    26         fac[i] = (LL)fac[i - 1] * i % p;
    27 }
    28 
    29 int lucas(int n, int m, int p) {
    30     int res = 1;
    31     while(n && m) {
    32         int a = n % p, b = m % p;
    33         if(a < b) return 0;
    34         res = (LL)res * fac[a] * power((LL)fac[b] * fac[a - b] % p, p - 2, p) % p;//三次乘法注意
    35         n /= p;
    36         m /= p;
    37     }
    38     return res;
    39 }
    40 
    41 int main() {
    42     scanf("%d", &T);
    43     while(T--) {
    44         scanf("%d%d%d", &n, &m, &p);
    45         init_fac(p);
    46         printf("%d
    ", lucas(n + m, m, p));
    47     }
    48 }
    View Code
  • 相关阅读:
    使用ACEGI搭建权限系统:第三部分
    分支在版本树中的应用(使用subversion)
    acegi安全框架使用:第二部分
    错误数据导致java.lang.IllegalArgumentException:Unsupported configuration attributes
    移动中间件和wap网关的比较
    3年后,又回到了.net阵营
    android中listView的几点总结
    oracle相关分布式数据解决方案
    ajax实现用户名存在校验
    使用template method模式简化android列表页面
  • 原文地址:https://www.cnblogs.com/oyking/p/4101532.html
Copyright © 2011-2022 走看看