zoukankan      html  css  js  c++  java
  • SGU 455 Sequence analysis(Cycle detection,floyd判圈算法)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=455

    Due to the slow 'mod' and 'div' operations with int64 type, all Delphi solutions for the problem 455 (Sequence analysis) run much slower than the same code written in C++ or Java. We do not guarantee that Delphi solution exists. 


    You are given a sequence of signed 64-bit integers defined as follows:

    • x0 = 1,
    • ,

    where 

    mod

     is a remainder operator. All arithmetic operations are evaluated without overflow checking. Use standard "remainder" operator for programming languages (it differs from the mathematical version; for example  in programming, while  in mathematics). Use "

    long long

    " type in C++, "

    long

    " in Java and "

    int64

    " in Delphi to store xi and all other values.

    Let's call a sequence element xp repeatable if it occurs later in the sequence — meaning that there exists such qq > p, that xq = xp. The first repeatable element M of the sequence is such an element xm that xm is repeatable, and none of the xp where p < m are repeatable.

    Given AB and C, your task is to find the index of the second occurence of the first repeatable element M in the sequence if the index is less or equal to 2 · 106. Per definition, the first element of the sequence has index 0.

    Input

    The only line of input contains three signed 64-bit integers: AB and C (B > 0, C > 0).

    Output

    Print a single integer  — the index of the second occurence of the first repeatable member if it is less or equal to 2 · 106. Print -1 if the index is more than 2 · 106.

    题目大意:给出x[0] = 1,还有A、B、C,有x[i+1] = (A * x[i] + x[i] % B) % C。求第二个循环节出现的位置。

    思路:http://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare (floyd判圈算法,龟兔算法?)

    给一个初始值x[0],有一个函数x[i + 1] = f(x[i])。若x始终在有限集合中运算,那么这些x值会构成一个环。

    在此题中,整数模一个C后,显然得到的值是有限的。

    设第一个循环节从x[μ]开始,循环节长度为λ

    那么对任意i = kλ ≥ μ,一定会有x[kλ] = x[kλ + kλ],即x[i] = x[2i]

    于是我们可以用以下代码,找出满足x[v] = x[2v]的第一个ν,显然在[μ, μ + λ]间存在一个v = kλ,则此步复杂度为O(μ+λ)

        long long x = f(x0), y = f(f(x0));
        int v = 1;
        while(x != y)
            x = f(x), y = f(f(y)), v++;
    

    由于对任意i ≥ μ,有x[i] = x[i + λ] = x[i + kλ],那么同意有x[μ] = x[μ + λ] = x[μ + kλ] = x[μ + v]

    在上面的代码中,我们已经求得了x[v],其中两个变量都等于x[v]

    那么基于x[μ] = x[μ + v]的事实。我们可以用下面的代码,循环μ次,求出x[μ]

        x = x0;
        int mu = 0;
        while(x != y)
            x = f(x), y = f(y), mu++;
    

    上述代码已经求出μx[μ]。最后,只要再循环λ遍,即可求出循环节长度:

        int lam = 1;
        y = f(x);
        while(x != y) y = f(y), lam++;
    

    总时间复杂度为O(μ+λ),空间复杂度为O(1)

    对于本题,输出μ+λ即可。

    至于本题的计算过程可能溢出的事情我没想……我发现大家都没管,我也不管了……

    代码(312MS):

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long LL;
     4 
     5 const int MAXR = 2e6;
     6 
     7 LL A, B, C;
     8 
     9 LL next(LL x) {
    10     return (A * x + x % B) % C;
    11 }
    12 
    13 int main() {
    14     scanf("%I64d%I64d%I64d", &A, &B, &C);
    15     LL x = next(1), y = next(x);
    16     int v = 1;
    17     while(v <= MAXR && x != y)
    18         x = next(x), y = next(next(y)), v++;
    19     if(v > MAXR) {
    20         puts("-1");
    21         return 0;
    22     }
    23 
    24     x = 1;
    25     int mu = 0;
    26     while(x != y)
    27         x = next(x), y = next(y), mu++;
    28 
    29     int lam = 1;
    30     y = next(x);
    31     while(mu + lam <= MAXR && x != y) y = next(y), lam++;
    32 
    33     if(mu + lam <= MAXR) printf("%d
    ", mu + lam);
    34     else puts("-1");
    35 }
    View Code
  • 相关阅读:
    NodeJS学习笔记 进阶 (11)Nodejs 进阶:调试日志打印:debug模块
    NodeJS学习笔记 进阶 (10)Nodejs 进阶:log4js入门实例(ok))
    NodeJS学习笔记 进阶 (9)express+cookie-parser:签名机制深入剖析(ok)
    NodeJS学习笔记 进阶 (8)express+morgan实现日志记录(ok)
    NodeJS学习笔记 进阶 (7)express+session实现简易身份认证(ok)
    NodeJS学习笔记 进阶 (6)本地调试远程服务器上的Node代码(ok)
    NodeJS学习笔记 进阶 (5)将图片转成datauri嵌入到html(ok)
    51nod 1287 线段树
    51nod 1043 数位dp
    51nod 1042 数位dp
  • 原文地址:https://www.cnblogs.com/oyking/p/4286916.html
Copyright © 2011-2022 走看看