zoukankan      html  css  js  c++  java
  • 03Redis系列之高级用法

    一 慢查询

    1.1 生命周期

    我们配置一个时间,如果查询时间超过了我们设置的时间,我们就认为这是一个慢查询.

    慢查询发生在第三阶段

    客户端超时不一定慢查询,但慢查询是客户端超时的一个可能因素

    image-20191225102102218

    1.2 两个配置

    1.2.1 slowlog-max-len

    慢查询是一个先进先出的队列

    固定长度

    保存在内存中

    1.2.2 slowlog-max-len

    慢查询阈值(单位:微秒)

    slowlog-log-slower-than=0,记录所有命令

    slowlog-log-slower-than <0,不记录任何命令

    1.2.3 配置方法

    1 默认配置

    config get slowlog-max-len=128

    Config get slowly-log-slower-than=10000

    2 修改配置文件重启

    3 动态配置

    # 设置记录所有命令
    config set slowlog-log-slower-than 0
    # 最多记录100条
    config set slowlog-max-len 100
    # 持久化到本地配置文件
    config rewrite
    
    '''
    config set slowlog-max-len 1000
    config set slowlog-log-slower-than 1000
    '''
    

    1.3 三个命令

    slowlog get [n]  #获取慢查询队列
    '''
    日志由4个属性组成:
    1)日志的标识id
    2)发生的时间戳
    3)命令耗时
    4)执行的命令和参数
    '''
    
    slowlog len #获取慢查询队列长度
    
    slowlog reset #清空慢查询队列
    
    

    1.4 经验

    1 slowlog-max-len 不要设置过大,默认10ms,通常设置1ms
    2 slowlog-log-slower-than不要设置过小,通常设置1000左右
    3 理解命令生命周期
    4 定期持久化慢查询
    

    二 pipeline

    2.1 什么是pipeline(管道)

    Redis的pipeline(管道)功能在命令行中没有,但redis是支持pipeline的,而且在各个语言版的client中都有相应的实现

    将一批命令,批量打包,在redis服务端批量计算(执行),然后把结果批量返回

    1次pipeline(n条命令)=1次网络时间+n次命令时间

    pipeline期间将“独占”链接,此期间将不能进行非“管道”类型的其他操作,直到pipeline关闭;如果你的pipeline的指令集很庞大,为了不干扰链接中的其他操作,你可以为pipeline操作新建Client链接,让pipeline和其他正常操作分离在2个client中。不过pipeline事实上所能容忍的操作个数,和socket-output缓冲区大小/返回结果的数据尺寸都有很大的关系;同时也意味着每个redis-server同时所能支撑的pipeline链接的个数,也是有限的,这将受限于server的物理内存或网络接口的缓冲能力
    

    2.2 客户端实现

    import redis
    pool = redis.ConnectionPool(host='10.211.55.4', port=6379)
    r = redis.Redis(connection_pool=pool)
    # pipe = r.pipeline(transaction=False)
    #创建pipeline
    pipe = r.pipeline(transaction=True)
    #开启事务
    pipe.multi()
    pipe.set('name', 'lqz')
    #其他代码,可能出异常
    
    pipe.set('role', 'nb')
     
    pipe.execute()
    

    2.3 与原生操作对比

    通过pipeline提交的多次命令,在服务端执行的时候,可能会被拆成多次执行,而mget等操作,是一次性执行的,所以,pipeline执行的命令并非原子性的
    

    2.4 使用建议

    1 注意每次pipeline携带的数据量

    2 pipeline每次只能作用在一个Redis的节点上

    3 M(mset,mget....)操作和pipeline的区别

    三 发布订阅

    3.1 角色

    发布者/订阅者/频道

    发布者发布了消息,所有的订阅者都可以收到,就是生产者消费者模型(后订阅了,无法获取历史消息)

    3.2 模型

    image-20191225163659941

    3.3 API

    publish channel message #发布命令
    publish souhu:tv "hello world" #在souhu:tv频道发布一条hello world  返回订阅者个数
    
    subscribe [channel] #订阅命令,可以订阅一个或多个
    subscribe souhu:tv  #订阅sohu:tv频道
    
    unsubscribe [channel] #取消订阅一个或多个频道
    unsubscribe sohu:tv  #取消订阅sohu:tv频道
        
    psubscribe [pattern...] #订阅模式匹配
    psubscribe c*  #订阅以c开头的频道
    
    unpsubscribe [pattern...] #按模式退订指定频道
    
    pubsub channels #列出至少有一个订阅者的频道,列出活跃的频道
    
    pubsub numsub [channel...] #列出给定频道的订阅者数量
    
    pubsub numpat #列出被订阅模式的数量
    

    3.4 发布订阅和消息队列

    发布订阅数全收到,消息队列有个抢的过程,只有一个抢到

    四 Bitmap位图

    4.1 位图是什么

    下面是字符串big对应的二进制(b是98)

    image-20191225172053447

    4.2 相关命令

    set hello big #放入key位hello 值为big的字符串
    getbit hello 0 #取位图的第0个位置,返回0
    getbit hello 1 #取位图的第1个位置,返回1 如上图
    
    ##我们可以直接操纵位
    setbit key offset value #给位图指定索引设置值
    setbit hello 7 1 #把hello的第7个位置设为1 这样,big就变成了cig
    
    setbit test 50 1 #test不存在,在key为test的value的第50位设为1,那其他位都以0补
    
    bitcount key [start end] #获取位图指定范围(start到end,单位为字节,注意按字节一个字节8个bit为,如果不指定就是获取全部)位值为1的个数
    
    bitop op destkey key [key...] #做多个Bitmap的and(交集)/or(并集)/not(非)/xor(异或),操作并将结果保存在destkey中 
    bitop and after_lqz lqz lqz2 #把lqz和lqz2按位与操作,放到after_lqz中
    
    bitpos key targetBit start end #计算位图指定范围(start到end,单位为字节,如果不指定是获取全部)第一个偏移量对应的值等于targetBit的位置
    bitpos lqz 1 #big 对应位图中第一个1的位置,在第二个位置上,由于从0开始返回1
    bitpos lqz 0 #big 对应位图中第一个0的位置,在第一个位置上,由于从0开始返回0
    bitpos lqz 1 1 2 #返回9:返回从第一个字节到第二个字节之间 第一个1的位置,看上图,为9
    

    image-20191225172547661

    4.3 独立用户统计

    1 使用set和Bitmap对比

    2 1亿用户,5千万独立(1亿用户量,约5千万人访问,统计活跃用户数量)

    数据类型 每个userid占用空间 需要存储用户量 全部内存量
    set 32位(假设userid是整形,占32位) 5千万 32位*5千万=200MB
    bitmap 1位 1亿 1位*1亿=12.5MB

    假设有10万独立用户,使用位图还是占用12.5mb,使用set需要32位*1万=4MB

    4.5 总结

    1 位图类型是string类型,最大512M

    2 使用setbit时偏移量如果过大,会有较大消耗

    3 位图不是绝对好用,需要合理使用

    五 HyperLogLog

    5.1 介绍

    基于HyperLogLog算法:极小的空间完成独立数量统计

    本质还是字符串

    5.2 三个命令

    pfadd key element #向hyperloglog添加元素,可以同时添加多个
    pfcount key #计算hyperloglog的独立总数
    pfmerge destroy sourcekey1 sourcekey2#合并多个hyperloglog,把sourcekey1和sourcekey2合并为destroy
    
    pfadd uuids "uuid1" "uuid2" "uuid3" "uuid4" #向uuids中添加4个uuid
    pfcount uuids #返回4
    pfadd uuids "uuid1" "uuid5"#有一个之前存在了,其实只把uuid5添加了
    pfcount uuids #返回5
    
    pfadd uuids1 "uuid1" "uuid2" "uuid3" "uuid4"
    pfadd uuids2 "uuid3" "uuid4" "uuid5" "uuid6"
    pfmerge uuidsall uuids1 uuids2 #合并
    pfcount uuidsall #统计个数 返回6
    

    5.3 内存消耗&总结

    百万级别独立用户统计,百万条数据只占15k

    错误率 0.81%

    无法取出单条数据,只能统计个数

    六 GEO

    6.1 介绍

    GEO(地理信息定位):存储经纬度,计算两地距离,范围等

    北京:116.28,39.55

    天津:117.12,39.08

    可以计算天津到北京的距离,天津周围50km的城市,外卖等

    6.2 5个城市纬度

    城市 经度 纬度 简称
    北京 116.28 39.55 beijing
    天津 117.12 39.08 tianjin
    石家庄 114.29 38.02 shijiazhuang
    唐山 118.01 39.38 tangshan
    保定 115.29 38.51 baoding

    6.3 相关命令

    geoadd key longitude latitude member #增加地理位置信息
    geoadd cities:locations 116.28 39.55 beijing #把北京地理信息天津到cities:locations中
    geoadd cities:locations 117.12 39.08 tianjin
    geoadd cities:locations 114.29 38.02 shijiazhuang
    geoadd cities:locations 118.01 39.38 tangshan
    geoadd cities:locations 115.29 38.51 baoding
        
    geopos key member #获取地理位置信息
    geopos cities:locations beijing #获取北京地理信息
    
    geodist key member1 member2 [unit]#获取两个地理位置的距离 unit:m(米) km(千米) mi(英里) ft(尺)
    geodist cities:locations beijing tianjin km #北京到天津的距离,89公里
    
    georadius key logitude latitude radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
    
    georadiusbymember key member radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
    #获取指定位置范围内的地理位置信息集合
    '''
    withcoord:返回结果中包含经纬度
    withdist:返回结果中包含距离中心节点位置
    withhash:返回解雇中包含geohash
    COUNT count:指定返回结果的数量
    asc|desc:返回结果按照距离中心店的距离做升序/降序排列
    store key:将返回结果的地理位置信息保存到指定键
    storedist key:将返回结果距离中心点的距离保存到指定键
    '''
    georadiusbymember cities:locations beijing 150 km
    '''
    1) "beijing"
    2) "tianjin"
    3) "tangshan"
    4) "baoding"
    '''
    

    6.4 总结

    3.2以后版本才有

    geo本质时zset类型

    可以使用zset的删除,删除指定member:zrem

      geoadd key longitude latitude member #增加地理位置信息
      geoadd cities:locations 116.28 39.55 beijing #把北京地理信息天津到cities:locations中
      geoadd cities:locations 117.12 39.08 tianjin
      geoadd cities:locations 114.29 38.02 shijiazhuang
      geoadd cities:locations 118.01 39.38 tangshan
      geoadd cities:locations 115.29 38.51 baoding
          
      geopos key member #获取地理位置信息
      geopos cities:locations beijing #获取北京地理信息
      
      geodist key member1 member2 [unit]#获取两个地理位置的距离 unit:m(米) km(千米) mi(英里) ft(尺)
      geodist cities:locations beijing tianjin km #北京到天津的距离,89公里
      
      georadius key logitude latitude radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
      
      georadiusbymember key member radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
      #获取指定位置范围内的地理位置信息集合
      '''
      withcoord:返回结果中包含经纬度
      withdist:返回结果中包含距离中心节点位置
      withhash:返回解雇中包含geohash
      COUNT count:指定返回结果的数量
      asc|desc:返回结果按照距离中心店的距离做升序/降序排列
      store key:将返回结果的地理位置信息保存到指定键
      storedist key:将返回结果距离中心点的距离保存到指定键
      '''
      georadiusbymember cities:locations beijing 150 km
      '''
      1) "beijing"
      2) "tianjin"
      3) "tangshan"
      4) "baoding"
      '''
    

    6.4 总结

    3.2以后版本才有

    geo本质时zset类型

    可以使用zset的删除,删除指定member:zrem

        geoadd key longitude latitude member #增加地理位置信息
        geoadd cities:locations 116.28 39.55 beijing #把北京地理信息天津到cities:locations中
        geoadd cities:locations 117.12 39.08 tianjin
        geoadd cities:locations 114.29 38.02 shijiazhuang
        geoadd cities:locations 118.01 39.38 tangshan
        geoadd cities:locations 115.29 38.51 baoding
            
        geopos key member #获取地理位置信息
        geopos cities:locations beijing #获取北京地理信息
        
        geodist key member1 member2 [unit]#获取两个地理位置的距离 unit:m(米) km(千米) mi(英里) ft(尺)
        geodist cities:locations beijing tianjin km #北京到天津的距离,89公里
        
        georadius key logitude latitude radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
        
        georadiusbymember key member radiusm|km|ft|mi [withcoord] [withdist] [withhash] [COUNT count] [asc|desc] [store key][storedist key]
        #获取指定位置范围内的地理位置信息集合
        '''
        withcoord:返回结果中包含经纬度
        withdist:返回结果中包含距离中心节点位置
        withhash:返回解雇中包含geohash
        COUNT count:指定返回结果的数量
        asc|desc:返回结果按照距离中心店的距离做升序/降序排列
        store key:将返回结果的地理位置信息保存到指定键
        storedist key:将返回结果距离中心点的距离保存到指定键
        '''
        georadiusbymember cities:locations beijing 150 km
        '''
        1) "beijing"
        2) "tianjin"
        3) "tangshan"
        4) "baoding"
        '''
        
    

    6.4 总结

    3.2以后版本才有

    geo本质时zset类型

    可以使用zset的删除,删除指定member:zrem cities:locations beijing

  • 相关阅读:
    利用Powershell和ceye.io实现Windows账户密码回传
    Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力
    python 读取二进制文件 转为16进制输出
    滴滴持续扩招私车 倒逼官方就范
    滴滴专车——司机提现流程
    滴滴专车司机升降级标准流程
    北京Uber优步司机奖励政策(9月21日~9月27日)
    滴滴快车奖励政策,高峰奖励,翻倍奖励,按成交率,指派单数分级(9月12日~9月18日)
    北京Uber优步司机奖励政策(9月14日~9月20日)
    天津市人民优步Uber司机奖励政策(9月14日~9月20日)
  • 原文地址:https://www.cnblogs.com/oysq/p/15636493.html
Copyright © 2011-2022 走看看