zoukankan      html  css  js  c++  java
  • hdu 2842 Chinese Rings 矩阵快速幂

    分析:

    后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响。所以先取最后面的环

    设状态F(n)表示n个环全部取下来的最少步数

    先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1个环属于未被取下来的状态。那么F(n) = F(n-2) + 1 + ... (这里的1表示取下第n个需要一步)

    即F(n)可以为F(n-2) + 1与某些数的和。取下n后,1~n-2为取下的状态,n-1为未被取下的状态。如果我们想取下n-1,那么n-2要为未被取下来的状态且1~n-3为被取下的状态。

    但是这里不能直接将n-2变成为未取下的状态,你想把n-2的状态改变,就得使n-3为未被取下来的状态且1~n-4为被取下的状态;你想把n-3的状态改变,就得使n-4为未被取下来的状态且1~n-5为被取下的状态.

    这个一直递推下去你要使1~n-2全部属于未被取下的状态才能继续取n-1。

    将1~n全部取下来有下列四步

    第一步:取1~n-2,需要F(n-2)步

    第二步:取第n个,需要1步

    第三步:恢复1~n-2,需要F(n-2)步 (取下来的最少步数和恢复的最少步数是一样的,它们是对称的)

    第四步:将1~n-1个全部取下来

    所以:F(n) = F(n-1) + 2*F(n-2) + 1

    矩阵快速幂套模板啦!

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    typedef long long ll;
    const int Mod = 200907;
    const int N = 5;
    int msize;
    
    struct Mat
    {
        int mat[N][N];
    };
    
    Mat operator *(Mat a, Mat b)
    {
        Mat c;
        memset(c.mat, 0, sizeof(c.mat));
        for(int k = 0; k < msize; ++k)
            for(int i = 0; i < msize; ++i)
                if(a.mat[i][k])
                    for(int j = 0; j < msize; ++j)
                        if(b.mat[k][j])
                            c.mat[i][j] = ((ll)a.mat[i][k] * b.mat[k][j] + c.mat[i][j])%Mod;
        return c;
    }
    
    Mat operator ^(Mat a, int k)
    {
        Mat c;
        memset(c.mat,0,sizeof(c.mat));
        for(int i = 0; i < msize; ++i)
            c.mat[i][i]=1;
        for(; k; k >>= 1)
        {
            if(k&1) c = c*a;
            a = a*a;
        }
        return c;
    }
    
    int main()
    {
        int n;
        msize = 3;
        Mat A;
        A.mat[0][0] = 1, A.mat[0][1] = 2, A.mat[0][2] = 1;
        A.mat[1][0] = 1, A.mat[1][1] = 0, A.mat[1][2] = 0;
        A.mat[2][0] = 0, A.mat[2][1] = 0, A.mat[2][2] = 1;
        while(~scanf("%d",&n) && n)
        {
            if(n==1)
            {
                puts("1");
                continue;
            }
            Mat ans = A^(n-2);
            printf("%d
    ", (ans.mat[0][0]*2 + ans.mat[0][1] + ans.mat[0][2])%Mod);
        }
        return 0;
    }
  • 相关阅读:
    linux---shell数组
    linux---shell传递参数
    Windows mysql免安装版配置。(版本号-5.6.45);
    contos 6.9 和 centos7 配置docker?
    数据库表的演化过程
    docker简单介绍。
    Linux 配置 mycat 和 分库分表配置。
    Linux 配置mysql 免安装版。
    mycat 简单介绍
    kibana 对es的简单操作。
  • 原文地址:https://www.cnblogs.com/pach/p/7256925.html
Copyright © 2011-2022 走看看